Table of Contents

1. About This Guide .. 4
 1.1. What You Need to Know Before You Begin ... 4
 1.2. Terminology Used in this Guide .. 4
 1.3. How to Find More Information ... 4

2. Kit Contents and System Requirements ... 5
 2.1. Kit Contents .. 5
 2.2. System Requirements ... 5

3. About Your Host Bus Adapter ... 6
 3.1. Standard Features .. 6
 3.2. Mechanical Information ... 6
 3.3. Visual Indicators ... 6
 3.4. About the Adaptec HBA 1100-8i ... 7
 3.5. About the Adaptec HBA 1100-4i .. 9
 3.6. About the Adaptec HBA 1100-8e .. 11
 3.7. About the Adaptec HBA 1100-8i8e ... 13
 3.8. About the Adaptec HBA 1100-16e ... 15
 3.9. About the Adaptec HBA 1100-16i ... 17
 3.10. About the Adaptec HBA 1100-24i ... 19

4. Installing the Controller and Disk Drives .. 22
 4.1. Before You Begin ... 22
 4.2. Selecting Disk Drives and Cables .. 22
 4.3. Installing the Host Bus Adapter .. 22

5. Installing the Driver and an Operating System ... 25
 5.1. Download the Driver Package .. 25
 5.2. Creating a Driver Disk .. 25
 5.3. Installing with Windows ... 25
 5.4. Installing with Red Hat Linux .. 26
 5.5. Installing with SuSE Linux Enterprise Server .. 26
 5.6. Installing with Oracle Linux .. 27
 5.7. Installing with Ubuntu Linux .. 27
 5.8. Installing with Debian Linux .. 27
 5.9. Installing with FreeBSD ... 28
 5.10. Installing with Citrix XenServer ... 29
 5.11. Installing with VMware .. 29

6. Installing the Driver on an Existing Operating System .. 31
 6.1. Download the Driver Package .. 31
 6.2. Creating a Driver Disk .. 31
 6.3. Installing on Windows .. 31
 6.4. Installing on Red Hat ... 31
 6.5. Installing on SuSE Linux Enterprise Server .. 32
 6.6. Installing on Oracle Linux .. 32
 6.7. Installing on Ubuntu Linux .. 32
1. **About This Guide**

This Installation and User’s Guide explains how to install and setup your Adaptec® HBA 1100 Series Host Bus Adapter, including driver installation and use of the BIOS-based SAS/SATA Configuration utility. It also provides troubleshooting tips and instructions for flashing the HBA 1100 Series firmware.

These HBA 1100 Series models are described in this guide:

• Adaptec HBA 1100-8i
• Adaptec HBA 1100-4i
• Adaptec HBA 1100-8e
• Adaptec HBA 1100-16i
• Adaptec HBA 1100-24i
• Adaptec HBA 1100-8i8e
• Adaptec HBA 1100-16e

1.1 **What You Need to Know Before You Begin**

This guide is written for data storage and IT professionals who are responsible for installing, configuring, and maintaining HBA 1100 Series Host Bus Adapters in computers or servers in a "cloud" or data center environment. You should be familiar with computer hardware, operating system administration, data storage devices, and SAS and Serial ATA (SATA) technology.

1.2 **Terminology Used in this Guide**

Many of the terms and concepts referred to in this guide are known to computer users by multiple names. This guide uses these terms:

• Host Bus Adapter or HBA (also known as controller, adapter, or I/O card)
• Disk drive (also known as hard disk, hard drive, or hard disk drive)
• Solid State Drive (also known as SSD or non-rotating storage media)
• Enclosure (also known as a storage enclosure, disk drive enclosure, or JBOD)

1.3 **How to Find More Information**

You can find more information about your HBA 1100 Series Host Bus Adapter by referring to these documents, available for download at start.adaptec.com.

• *Adaptec Host Bus Adapter 1100 Series Command Line Utility User’s Guide*—Describes how to use the ARCCONF utility to perform configuration and storage management tasks from an interactive command line. (ESC-2161614)

• *Adaptec HBA 1100 Series Host Bus Adapters Installation and User’s Guide* (this manual)—Describes how to install drivers and configure the HBA 1100 Series adapter for initial use. (DS-00004281A)

• *Adaptec Host Bus Adapter 1100 Series Release Notes*—Includes updated product information and known issues and limitations. (DS-60001740)
2. **Kit Contents and System Requirements**
 This section lists the contents of your HBA 1100 Series kit and the system requirements for successfully installing and using your HBA.

2.1 **Kit Contents**
 - HBA 1100 Series adapter
 - Low-profile bracket

 Note: The latest firmware, drivers, utilities software, and documentation can be downloaded at start.adaptec.com. For more information, see 5.1. Download the Driver Package.

2.2 **System Requirements**
 - PC-compatible computer with Intel Pentium, or equivalent, processor
 - 4 GB of RAM minimum
 - Available compatible PCIe slot
 - One of these operating systems:
 - Microsoft® Windows®
 - Red Hat® Enterprise Linux®
 - CentOS
 - SuSE Linux Enterprise Server
 - Ubuntu Linux
 - Debian Linux
 - Oracle Linux
 - Citrix Xenserver
 - FreeBSD
 - VMware ESXi

 See the *Release Notes* for a complete list of supported OSs and OS versions.
 - USB flash drive or CD burner, for creating driver disks and bootable media
3. **About Your Host Bus Adapter**

This section provides an overview of the features of the HBA 1100 Series adapters.

3.1 **Standard Features**

- Support for SAS and SATA Hard Disk Drives (HDD), Solid State Drives (SSDs), and SAS tape drives
- UEFI pre-boot BIOS, CTRL-A configuration utility
- Flash ROM for updates to firmware and BIOS
- Up to 8 ports, 12 Gbps SAS I/O and 8 Gbps PCIe I/O with HBA 1100-8i or HBA1100-8e
- Up to 4 ports, 12 Gbps SAS I/O and 8 Gbps PCIe I/O with HBA 1100-4i
- Up to 16 ports, 12 Gbps SAS I/O and 8 Gbps PCIe I/O with HBA 1100-16i
- Up to 24 ports, 12 Gbps SAS I/O and 8 Gbps PCIe I/O with HBA 1100-24i
- SAS 3.0, PCIe 3.0
- Low-profile MD2 form factor
- Mini-SAS HD connectors
- Support for disk drive enclosures with SES 2.x/3.x inband support, TWI, IBPI and SGPIO enclosure management
- Thermal sensor, with logging capabilities

3.2 **Mechanical Information**

3.2.1 **Board Dimensions**

This table shows the board dimensions of the HBA 1100 Series adapters, in inches.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>HBA 1100-8i/8e/16i/24i</th>
<th>HBA 1100-4i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>2.712"</td>
<td>2.712"</td>
</tr>
<tr>
<td>Length</td>
<td>6.600"</td>
<td>5.200"</td>
</tr>
<tr>
<td>PCB Thickness</td>
<td>0.062"</td>
<td>0.062"</td>
</tr>
<tr>
<td>Max Component Height, Top Side</td>
<td>0.570"</td>
<td>0.570"</td>
</tr>
<tr>
<td>Max Component Height, Bottom Side</td>
<td>0.105"</td>
<td>0.105"</td>
</tr>
</tbody>
</table>

3.2.2 **Heat Sink**

HBA 1100 Series adapters include a passive heat sink. For airflow requirements, see 12.1. **Environmental Specifications**.

3.3 **Visual Indicators**

LEDs on HBA 1100 Series adapters provide a visual indication of the board hardware status. The LED locations vary, and may be on the front of the board or back of the board. The LED states are described below in Table 3-2 below.

Front panel brackets have three holes for the Heartbeat LED, Fault LED, and Crypto LED.

Note: The Crypto LED (near the mounting bracket) is not present on HBA 1100-4i adapter boards.
Table 3-2. HBA1100 Status LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEARTBEAT (DS5)</td>
<td>Green</td>
<td>Heartbeat (blinks once per second when firmware is operating normally)</td>
</tr>
<tr>
<td>FAULT (DS7)</td>
<td>Amber</td>
<td>Hardware Lockup/Fault</td>
</tr>
<tr>
<td>CRYPTO (DS1)</td>
<td>Green</td>
<td>Cryptographic State: always off. HBA 1100 Series adapters do not support encryption.</td>
</tr>
<tr>
<td>AVS_ENB (DS2)</td>
<td>Green</td>
<td>The controller is operating normally if this LED is on or off: On=Adaptive Voltage Scaling (AVS) enabled, Off=Adaptive Voltage Scaling (AVS) disabled. Note: Not supported on HBA1100-16i and HBA1100-24i adapters.</td>
</tr>
<tr>
<td>PAL_DEBUG (DS10)</td>
<td>Yellow</td>
<td>Reserved: always off. HBA 1100 Series adapters do not support this feature.</td>
</tr>
</tbody>
</table>

3.4 About the Adaptec HBA 1100-8i

The Adaptec HBA 1100-8i is a SAS Host Bus Adapter with these features:
Figure 3-2. HBA 1100-8i Features

1. Mounting Bracket
2. HDA mode jumper
3. UART
4. Mini SAS HD Connectors
5. PCIe x8 Connector
Form Factor
- PCIe Low-profile MD2

Bus compatibility
- PCIe 3.0

PCIe bus width
- x8

Data transfer rate
- 12 Gb/s per port

Phys (Unified Serial Ports)
- 8

Standard memory
- 32 MB Boot Flash, 256 Kb SEEPROM, 128 KB MRAM

Connectors, internal
- 1x2 mini-SAS HD x8 (SFF-8643)

Maximum number of disk drives
- 8 direct-attached (or up to 256 with expanders)

Enclosure Support
- SES 2.x/3.x inband support, TWI, IBPI and SGPIO

Thermal sensor
- Inlet ambient temperature, ASIC die temperature, Top-side board ambient temperature, Bottom-side board ambient temperature

3.5 About the Adaptec HBA 1100-4i

The Adaptec HBA 1100-4i is a SAS Host Bus Adapter with these features:
Figure 3-3. HBA 1100-4i Features
Form Factor
PCIe Low-profile MD2 (Smaller than MD2)

Bus compatibility
PCIe 3.0

PCIe bus width
x8

Data transfer rate
12 Gb/s per port

Phys (Unified Serial Ports)
4

Standard memory
32 MB Boot Flash, 128 Kb SEEPROM, 128 KB MRAM

Connectors, internal
1x1 mini-SAS HD x4 (SFF-8643)

Maximum number of disk drives
4 direct-attached (or up to 256 with expanders)

Enclosure Support
SES 2.x/3.x inband support, TWI, IBPI and SGPIO

Thermal sensor
Inlet ambient temperature, ASIC die temperature, Top-side board ambient temperature, Bottom-side board ambient temperature

3.6 About the Adaptec HBA 1100-8e

The Adaptec HBA 1100-8e is a SAS Host Bus Adapter with these features:
Figure 3-4. HBA 1100-8e Features

1. Mounting Bracket
2. HDA mode jumper
3. UART
4. PCIe x8 Connector
5. Mini SAS HD Connectors

About Your Host Bus Adapter

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factor</td>
<td>PCIe Low-profile MD2</td>
</tr>
<tr>
<td>Bus compatibility</td>
<td>PCIe 3.0</td>
</tr>
<tr>
<td>PCIe bus width</td>
<td>x8</td>
</tr>
<tr>
<td>Data transfer rate</td>
<td>12 Gb/s per port</td>
</tr>
<tr>
<td>Phys (Unified Serial Ports)</td>
<td>8</td>
</tr>
<tr>
<td>Standard memory</td>
<td>32 MB Boot Flash, 256 Kb SEEPROM, 1 Mbit MRAM</td>
</tr>
<tr>
<td>Connectors, external</td>
<td>1x2 mini-SAS HD x8 (SFF-8644)</td>
</tr>
<tr>
<td>Maximum number of disk drives</td>
<td>8 direct-attached (or up to 256 with expanders)</td>
</tr>
<tr>
<td>Enclosure Support</td>
<td>SES 2.x/3.x inband support, TWI, IBPI and SGPIO</td>
</tr>
<tr>
<td>Thermal sensor</td>
<td>Inlet ambient temperature, ASIC die temperature, Top-side board ambient temperature, Bottom-side board ambient temperature</td>
</tr>
</tbody>
</table>

3.7 About the Adaptec HBA 1100-8i8e

The Adaptec HBA 1100-8i8e is a SAS Host Bus Adapter with these features:
Figure 3-5. HBA 1100-8i8e Features

1. Mounting Bracket
2. HDA mode Connector
3. UART
4. 2 Internal mini-SAS HD connectors (CN6-CN8)
5. PCIe x8 Connector
6. 2 External mini-SAS HD connectors (CN9-CN10)
About Your Host Bus Adapter

<table>
<thead>
<tr>
<th>Form Factor</th>
<th>PCIe Low-profile MD2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus compatibility</td>
<td>PCIe 3.0</td>
</tr>
<tr>
<td>PCIe bus width</td>
<td>x8</td>
</tr>
<tr>
<td>Data transfer rate</td>
<td>12 Gb/s per port</td>
</tr>
<tr>
<td>Phys (Unified Serial Ports)</td>
<td>16</td>
</tr>
<tr>
<td>Standard memory</td>
<td>32 MB Boot Flash, 128 Kb SEEPROM, 128 KB MRAM</td>
</tr>
<tr>
<td>Connectors, internal</td>
<td>2 mini SAS HD x4 (SFF-8644) and 2 mini SAS HD x4 (SFF-8643)</td>
</tr>
<tr>
<td>Maximum number of disk drives</td>
<td>16 direct-attached (or up to 256 with expanders)</td>
</tr>
<tr>
<td>Enclosure Support</td>
<td>SES 2.x/3.x inband support, TWI, IBPI and SGPIO</td>
</tr>
<tr>
<td>Thermal sensor</td>
<td>Ambient temperature, ASIC die temperature</td>
</tr>
</tbody>
</table>

3.8 About the Adaptec HBA 1100-16e

The Adaptec HBA 1100-16e is a SAS Host Bus Adapter with these features:
Figure 3-6. HBA 1100-16e Features

1. Mounting Bracket
2. HDA mode Connector
3. UART
4. PCIe x8 Connector
5. 4 External mini-SAS HD connectors (CN3-CN7)
About Your Host Bus Adapter

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factor</td>
<td>PCIe Low-profile MD2</td>
</tr>
<tr>
<td>Bus compatibility</td>
<td>PCIe 3.0</td>
</tr>
<tr>
<td>PCIe bus width</td>
<td>x8</td>
</tr>
<tr>
<td>Data transfer rate</td>
<td>12 Gb/s per port</td>
</tr>
<tr>
<td>Phys (Unified Serial Ports)</td>
<td>16</td>
</tr>
<tr>
<td>Standard memory</td>
<td>32 MB Boot Flash, 128 KB MRAM, 128 Kb SEEPROM</td>
</tr>
<tr>
<td>Connectors, internal</td>
<td>4 mini SAS HD x4 (SFF-8644)</td>
</tr>
<tr>
<td>Maximum number of disk drives</td>
<td>16 direct-attached (or up to 256 with expanders)</td>
</tr>
<tr>
<td>Enclosure Support</td>
<td>SES 2.x/3.x inband support, TWI, IBPI and SGPIO</td>
</tr>
<tr>
<td>Thermal sensor</td>
<td>Ambient temperature, ASIC die temperature</td>
</tr>
</tbody>
</table>

3.9 About the Adaptec HBA 1100-16i

The Adaptec HBA 1100-16i is a SAS Host Bus Adapter with these features:
Figure 3-7. HBA 1100-16i Features

1. Mounting Bracket
2. UART
3. 4 internal mini-SAS HD connectors (CN0-CN3)
4. PCIe x8 Connector
5. HDA mode jumper
Form Factor | PCIe Low-profile MD2
---|---
Bus compatibility | PCIe 3.0
PCle bus width | x8
Data transfer rate | 12 Gb/s per port
Phys (Unified Serial Ports) | 16
Standard memory | 32 MB Boot Flash, 128 Kb SEEPROM, 128 KB MRAM
Connectors, internal | 4 mini-SAS HD x4 (SFF-8643)
Maximum number of disk drives | 16 direct-attached (or up to 256 with expanders)
Enclosure Support | SES 2.x/3.x inband support, TWI, IBPI and SGPIO
Thermal sensor | Ambient temperature, ASIC die temperature

3.10 About the Adaptec HBA 1100-24i

The Adaptec HBA 1100-24i is a SAS Host Bus Adapter with these features:
Figure 3-8. HBA 1100-24i Features

1. Mounting Bracket
2. UART
3. 2 internal mini-SAS HD connectors (CN4-CN5)
4. 4 internal mini-SAS HD connectors (CN0-CN3)
5. PCIe x8 Connector
6. HDA mode jumper
<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factor</td>
<td>PCIe Low-profile MD2</td>
</tr>
<tr>
<td>Bus compatibility</td>
<td>PCIe 3.0</td>
</tr>
<tr>
<td>PCIe bus width</td>
<td>x8</td>
</tr>
<tr>
<td>Data transfer rate</td>
<td>12 Gb/s per port</td>
</tr>
<tr>
<td>Phys (Unified Serial Ports)</td>
<td>24</td>
</tr>
<tr>
<td>Standard memory</td>
<td>32 MB Boot Flash, 128 Kb SEEPROM, 128 KB MRAM</td>
</tr>
<tr>
<td>Connectors, internal</td>
<td>6 mini-SAS HD x4 (SFF-8643)</td>
</tr>
<tr>
<td>Maximum number of disk drives</td>
<td>24 direct-attached (or up to 256 with expanders)</td>
</tr>
<tr>
<td>Enclosure Support</td>
<td>SES 2.x/3.x inband support, TWI, IBPI and SGPIO</td>
</tr>
<tr>
<td>Thermal sensor</td>
<td>Ambient temperature, ASIC die temperature</td>
</tr>
</tbody>
</table>
4. **Installing the Controller and Disk Drives**
 This section explains how to install your HBA 1100 Series adapter in a computer cabinet or server and connect it to internal and external disk drives.

4.1 **Before You Begin**
 - Read Safety Information.
 - Familiarize yourself with your HBA's physical features (see Standard Features).
 - Ensure that you have the right number of disk drives for your application (see Selecting Disk Drives and Cables).

4.2 **Selecting Disk Drives and Cables**
 4.2.1 **Disk Drives**
 The HBA 1100 Series supports SAS and SATA disk drives, Solid State Drives (SSDs), and SAS tape drives.
 For more information about compatible disk drives, refer to adaptec.com/cables.

 4.2.2 **Cables**
 Depending on your HBA model and application requirements, you can use any of the cables listed below. For more information about cabling options for your HBA 1100 Series adapter, visit adaptec.com/cables.
 Note: We recommend using Microchip Adaptec SAS cables only.

 SAS HD Cables

 ![Internal Mini SAS HD to SAS HD (SFF-8643 to SFF-8643)](image)
 Connects to a backplane or enclosure.

 ![External Mini SAS HD to SAS HD (SFF-8644 to SFF-8644)](image)
 Connects to a backplane or enclosure.

4.3 **Installing the Host Bus Adapter**
 This section describes how to install the HBA 1100 Series adapter into your computer cabinet or server. HBA 1100 Series adapters have two configurations:
 - Adapters with internal connectivity
 - Adapters with external connectivity
 Follow the steps below to install your HBA and connect internal or external storage devices.
1. Turn off your computer and disconnect the power cord and any network cables. Open the cabinet, following the manufacturer's instructions.

2. Select an available PCIe expansion slot that's compatible with your HBA and remove the slot cover, as shown in the figure below. (To check PCIe bus compatibility of your HBA, see About Your Host Bus Adapter.)

![Diagram](image)

CAUTION Touch a grounded metal object before handling the adapter.

3. Insert the HBA into the expansion slot and press down gently but firmly until it clicks into place. When installed properly, the adapter should appear level with the expansion slot.

![Diagram](image)

CAUTION Be sure to handle the adapter by its bracket or edges only. Apply pressure only on the edges when inserting the card into expansion slot.

4. Secure the bracket in the expansion slot, using the retention device (for instance, a screw or lever) supplied with your computer.

5. Connect mini-SAS HD cables between the HBA and internal or external storage devices.
 - For a HBA with internal ports, connect mini-SAS HD cables between the HBA and internal disk drives or enclosures.
• For a HBA with external ports, connect mini-SAS HD cables between the HBA and external disk drives or enclosures.

6. Close your computer cabinet, reconnect the power cord and network cables, then power up the system.
5. **Installing the Driver and an Operating System**

This chapter explains how to install the SmartPQI controller driver and an operating system on a bootable volume. It assumes that the HBA 1100 is installed in a computer or server.

A compatible driver is available inbox for many operating systems. If you are installing an OS version that already has a compatible driver, install the OS normally using the available OS media or image, then update the driver later using the procedures in 6. **Installing the Driver on an Existing Operating System**

Note:
- For information about building the SmartPQI drivers from source, see 10. **Installing the SmartPQI Drivers from Source**.

5.1 **Download the Driver Package**

Complete these steps to download the drivers for your operating system(s):

1. Open a browser window and log in to MyMicrochip.
2. Navigate to the HBA 1100 product page.
3. Download the controller driver package (zip file archive).
4. When the download completes, extract the package contents to a temporary location on your machine. Each driver is stored in a separate folder (\windows 2016, \rhel7, \rhel6, and so on).

Note: See the *Release Notes* for a complete list of driver files and folder structure.

5.2 **Creating a Driver Disk**

Create a driver disk by completing the steps below. You will need a USB flash drive to complete this task.

Note: For VMware, see 5.11. **Installing with VMware**.

1. Change to the driver directory for your operating system version.
2. Write the driver binary file to a USB flash drive.

 For example, if the USB drive is /dev/sdc on the Linux system, type (where #.#.#-### is the build number):

 - **RHEL 7**: `dd if=smartpqi-#.#.#-###.<rhel_version>.x86_64.dd of=/dev/sdc`
 - **SLES 12**: `dd if=smartpqi-#.#.#-###.<sles_version>.x86_64.dd of=/dev/sdc`

 Note: See the *Release Notes* for the latest build number.

3. Remove and label the driver disk.
4. Continue the installation with the instructions for your operating system.

5.3 **Installing with Windows**

Note: Use the following procedure for all supported Windows versions. You will need your Windows Installation DVD (or equivalent virtual media/iso image) to complete this task.

To install the controller SmartPQI driver while installing Windows:

1. Insert the Windows installation DVD, then restart the computer.
2. Follow the on-screen instructions to begin the Windows installation.
3. When prompted to specify a location for Windows, select **Load Driver**.
4. Insert the USB driver disk, browse to the driver location, then click **Ok**.
5. When prompted to select the driver to install, click **Next**.
6. Follow the on-screen instructions to complete the installation.

5.4 **Installing with Red Hat Linux**

To install the controller SmartPQI driver while installing Red Hat Linux, follow the steps in the sections below.

RHEL7 Update 6 Installation and Above

To install the RHEL7 driver with a Linux system:

1. Install the Linux system using the inbox smartpqiq driver.
2. After the installation completes, install the latest smartpqiq driver rpm by using the following command (where #.#.#-### is the build number and the RHEL version is formatted as follows: rhel7u9):
   ```
   rpm -ivh kmod-smartpqiq-#.#.###.<rhel_version>.x86_64.rpm
   ```

RHEL7 Installation with Secure Boot

To install the RHEL driver with a Linux system with secure boot enabled:

Note: For more information about installing RHEL with secure boot, refer to the RedHat online resources for "Signing Kernel Modules for Secure Boot".

1. Install the Linux system using the inbox smartpqiq driver in secure boot mode.
2. Enroll the Microchip public key for secure boot:
 a. Import public key:
   ```
   mokutil --import smart_driver_key_pub.der
   ```
 b. Reboot system.
 c. During boot, perform MOK key enrollment to accept the new key.
3. After the installation completes, install the signed driver rpm using the following command (where #.#.#-### is the build number):
   ```
   rpm -ivh kmod-smartpqiq-#.#.###.<rhel_version>.x86_64.rpm
   ```
4. Reboot.

5.5 **Installing with SuSE Linux Enterprise Server**

To install the controller SmartPQI driver while installing SuSE Linux, follow the steps in the sections below.

Installing with SLES 12 SP3 and Above

Follow these steps to install the driver while installing SLES 12 SP5:

1. Install the Linux system using the inbox smartpqiq driver.
2. After the installation completes, install the latest smartpqiq driver rpm by using the following command (where #.#.#-### is the build number and the SLES version is formatted as follows: sles12sp5):
   ```
   rpm -ivh smartpqiq-ueficert-#.#.###.<sles_version>.x86_64.rpm
   rpm -ivh smartpqiq-kmp-default-#.#.###.<sles_version>.x86_64.rpm
   ```

SLES 12 Installation with Secure Boot

To install the SLES driver with a Linux system with secure boot enabled:

1. Install the Linux system using the inbox smartpqiq driver in secure boot mode.
2. Enroll the Microchip public key for secure boot.
a. Install the ueficert package:

```
rpm -ivh smartpqi-ueficert-#.##.#-###.<sles_version>.x86_64.rpm
```

b. Import public key:

```
mokutil --import /etc/uefi/certs/17A8B2BE.crt
```

c. Reboot.
d. During boot, perform MOK key enrollment to accept the new key.

3. Install Microchip signed driver rpm package:

```
rpm -ivh smartpqi-kmp-default-#.##.#-###.<sles_version>.x86_64.rpm
```

4. Reboot.

5.6 **Installing with Oracle Linux**

To install the controller SmartPQI driver while installing Oracle Linux, follow the steps in the sections below.

Installing with Oracle Linux 7.6 and Above

Follow these steps to install the driver while installing Oracle Linux 7.6:

1. Install the Linux system using the inbox smartpqi driver.
2. After the installation completes, install the latest smartpqi driver rpm for the kernel you intend to run (where #.#.#-### is the build number and the Oracle Linux version is formatted as follows: ol7u9):

 - **Base Kernel**: `rpm -ivh kmod-smartpqi-#.##.#-###.<ol_version>.x86_64.rpm`
 - **UEK Kernel**: `rpm -ivh kmod-smartpqi-uek-#.##.#-###.<ol_version>.x86_64.rpm`

5.7 **Installing with Ubuntu Linux**

To install the controller SmartPQI driver while installing Ubuntu Linux 18.04 LTS and above:

1. Install the Linux system using the inbox smartpqi driver.
2. Reboot the system.
3. Install the smartpqi DKMS package (`smartpqi-dkms_#.##.#-###_all.deb`) by using the following commands (where #.#.#-### is the build number):

 - **Note**: The smartpqi DKMS package rebuilds the smartpqi driver automatically whenever the kernel on the system is updated. This ensures that you have a smartpqi driver to support the new kernel.

   ```
   apt-get update
   apt-get -f install build-essential dkms
dpkg -i smartpqi-dkms_#.##.#-###_all.deb
   ```

5.8 **Installing with Debian Linux**

To install the controller SmartPQI driver while installing Debian Linux 9.13 and above:

1. Install the Linux system using the inbox smartpqi driver.
2. Reboot the system.
3. Install the smartpqi DKMS package (`smartpqi-dkms_#.##.#-###_all.deb`) by using the following commands (where #.#.#-### is the build number):

   ```
   apt-get update
   apt-get -f install build-essential dkms
dpkg -i smartpqi-dkms_#.##.#-###_all.deb
   ```
Note: The smartpqi DKMS package rebuilds and activates the smartpqi driver automatically any time the kernel on the system is updated. This insures you have a smartpqi driver to support the new kernel.

apt-get install build-essential dkms
dpkg -i smartpqi-dkms_#.##-###_all.deb

5.9 Installing with FreeBSD
The following instructions are for FreeBSD v13.1 and earlier. For more instruction from FreeBSD v13.2, see 6.9. Installing on FreeBSD.

To install the controller SmartPQI driver while installing FreeBSD:
1. Copy the driver module (smartpqi.ko) to a USB drive.
 Disk partition the USB key, using gpart on a unix system.
 For example:

 # gpart create -s GPT da1
 # gpart add -t freebsd-ufs da1
 # newfs /dev/da1p1
 # mount /dev/da1p1 /mnt
 # cp smartpqi.ko /mnt

2. Insert the USB driver disk.
3. Insert the FreeBSD Installation disk into the CD/DVD drive and boot from it.
4. From the FreeBSD boot menu, press Escape to launch the boot loader prompt.
5. Perform the following steps at the boot loader prompt:
 a. Check all the present modules by executing following command.

 # lsmod

 Expected Output: It will show all the present modules.

 b. Unload the kernel module by executing the following command:

 # unload

 c. Check whether the kernel is unloaded or not by executing the following command:

 # lsmod

 Expected Output: It will show all the present modules.

 d. Check whether the USB drive is detected or not by executing the following command:

 # lsdev

 Expected Output:
 part 0: (removable)
 part 1: (removable)
 part 2: (removable)

 e. Load the kernel by executing the following command:

 # load /boot/kernel/kernel

 f. Load the driver module by executing the following command:

 # load part< USB key location >:smartpqi.ko

 For example: # load part2:smartpqi.ko
g. Continue the Installation procedure by typing the following command and pressing Enter.

```
# boot
```

h. After completing the kernel installation and before rebooting the system, add the driver to the new system. Choose "YES" when it prompts the following message for the manual configuration.

"The installation is now finished. Before exiting the installer, would you like to open a shell in the new system to make any final manual modifications?"

i. Use the following commands to complete the manual configuration:

i. Mount the USB key by using the following command:

```
# mount /dev/da1p1 /media
```

ii. Copy the driver to the boot directory by using the following command:

```
# cp /media/smartpqi.ko /boot/kernel/smartpqi.ko
```

iii. Ensure that the boot loader loads by using the following command:

```
# vi /boot/loader.conf
```

iv. Add the following line:

```
smartpqi_load="YES"
```

```
# reboot
```

6. If the system halts at `# mountroot>`, check for the boot partition using the following command:

```
# mountroot> ?
```

Note: The boot partition is primarily present in P2, so use the following command:

```
# mountroot> ufs:/dev/<da0p2>
```

5.10 Installing with Citrix XenServer

Note: For Hypervisor 8.2 or later, install Hypervisor on the system using the driver included in the release. Then update driver as necessary using the latest driver release from the Citrix support site.

Note: For XenServer 7.6 and above, a USB key is supported for the driver update ISO. On a Linux system, use the dd command to write the SmartPQI driver ISO image to the USB key. You will need the XenServer installation DVD (or equivalent virtual media/iso image) to complete this task. You must have administrator privilege to install the driver image.

To install the controller SmartPQI driver while installing Citrix XenServer:

1. On the machine where you want to install the OS and SmartPQI driver, insert the XenServer installation DVD, then restart your computer.
2. When prompted to add a driver, insert the driver USB key, press `F9`, then select local media.

Note: Leave the driver USB key inserted throughout the installation.

3. Verify the SmartPQI driver and "use".
4. Continue the XenServer installation, following the on-screen instructions.
5. Remove the driver USB key, then reboot your computer.

5.11 Installing with VMware

Note: You will need a writable CD or USB flash drive to complete this task. You must have administrator privileges to create the driver disk and install the driver image.
To install the controller SmartPQI driver with VMware ESXi, you must create a custom boot image using the VMware Image Builder tool. This tool automates the process of customizing the ESXi install-ISO and runs as a script under Microsoft PowerShell.

To install the SmartPQI controller driver while installing VMware:

1. Use VMware's ESXi image builder process to build a boot/install image that includes the desired driver. Instructions for this process can be found at docs.vmware.com/en/VMware-vSphere/7.0/com.vmware.esxi.install.doc/GUID-62B15826-B529-4519-B57A-98DFD0CC5522.html?hWord=N4IghgNiBcIJIFswHMCmACAOqVwjYQBNUAnEAXyA.
2. On the VMware ESXi machine, insert the custom boot CD/USB, then restart your computer.
3. Follow the on-screen instructions to begin the VMware installation.
4. Complete the VMware installation, following the on-screen instructions.
5. Remove the custom boot CD or USB drive, then reboot your computer.
6. **Installing the Driver on an Existing Operating System**

This chapter explains how to install the SmartPQI controller driver on an existing operating system. It assumes that the HBA 1100 is installed in a computer or server and the OS is already installed.

Notes:
- To install the driver while you're installing an operating system, see Installing the Driver and an Operating System.
- For information about building the SmartPQI drivers from source, see 10. Installing the SmartPQI Drivers from Source.

6.1 Download the Driver Package

Complete these steps to download the drivers for your operating system(s):

1. Open a browser window and log in to MyMicrochip.
2. Navigate to the HBA 1100 product page.
3. Download the controller driver package (zip file archive).
4. When the download completes, extract the package contents to a temporary location on your machine. Each driver is stored in a separate folder (\windows 2016, \rhel7, \rhel6, and so on).

 Note: See the [Release Notes](#) for a complete list of driver files and folder structure.

6.2 Creating a Driver Disk

Create a driver disk by completing the steps below. You will need a USB flash drive to complete this task.

1. Change to the driver directory for your operating system version.
2. Write the driver binary file to a USB flash drive.
3. Remove and label the driver disk.
4. Continue the installation with the instructions for your operating system.

6.3 Installing on Windows

Note: The following instructions apply to all supported Windows operating systems.

To install the controller SmartPQI driver on Windows:

1. Start or restart Windows.
2. In the Control Panel, launch the Device Manager, right-click your Smart Storage Controller, then select **Update Driver Software**.
3. Insert the driver disk, then select **Browse my computer for driver software**.
4. Browse to the driver disk location, then click **Next**.
5. Select the driver from the list, then click **Next**.
6. When the installation is complete, remove the driver disk and restart your computer.

6.4 Installing on Red Hat

To install the controller SmartPQI driver on Red Hat Linux, follow the steps in the sections below.

Installing on RHEL7 Update 6 and Above

To install the RHEL7 driver on a Linux system:

1. Install the latest smartpqi driver rpm by using the following command (where #.#.#-### is the build number and the RHEL version is formatted as follows: rhel7u9):

   ```bash
   rpm -ivh kmod-smartpqi-#.##-###.<rhel_version>.x86_64.rpm
   ```
2. Reboot the system.

6.5 Installing on SuSE Linux Enterprise Server
To install the controller SmartPQI driver on SLES, follow the steps below.

Installing on SLES 12 SP3 and Above
Follow these steps to install the driver on SLES 12 SP5:
1. Install the latest smartpqi driver rpm by using the following command (where #.#.#-### is the build number and the SLES version is formatted as follows: sles12sp5):

   ```
   rpm -ivh smartpqi-ueficert-#.#.#-###.<sles_version>.x86_64.rpm
   rpm -ivh smartpqi-kmp-default-#.#.#-###.<sles_version>.x86_64.rpm
   ```

2. Reboot the system.

6.6 Installing on Oracle Linux
To install the controller SmartPQI driver on Oracle Linux, follow the steps below.

Installing on Oracle Linux 7.6 and Above
To install the SmartPQI driver on an Oracle Linux system:
1. Install the latest smartpqi package using the following commands (where #.#.#-### is the build number and the Oracle Linux version is formatted as follows: ol7u9):

   ```
   Base Kernel: rpm –ivh kmod-smartpqi-#.#.#-###.<ol_version>.x86_64.rpm
   UEK Kernel: rpm –ivh kmod-smartpqi-uek-#.#.#-###.<ol_version>.x86_64.rpm
   UEK6ol7 Kernel: rpm –ivh kmod-smartpqi-uek6ol7-#.#.#-###.x86_64.rpm
   UEK6ol8 Kernel: rpm –ivh kmod-smartpqi-uek6ol8-#.#.#-###.x86_64.rpm
   ```

6.7 Installing on Ubuntu Linux
Notes:
1. For driver installation on Ubuntu Linux, you may need to create the root account and password.
2. The SmartPQI driver is available as inbox for Ubuntu 18.04 and above.

To install the controller SmartPQI driver on Ubuntu:
1. Login to the system using the root user credentials.
2. Update the Ubuntu package index by using the following command:
   ```
   sudo apt-get update
   ```
3. Load the Ubuntu unpacking tools:
   ```
   sudo apt-get –f install build-essential dkms
   ```
4. Install the latest SmartPQI DKMS DEB driver package by using the following command (where #.#.#-### is the build number):
   ```
   dpkg -i smartpqi-dkms_#.#.#-###_all.deb
   ```

6.8 Installing on Debian Linux
To install the controller SmartPQI driver on Debian 9.13 and above:
1. Login to the system as root, or sudo to root.
2. Install the supporting package for the SmartPQI DKMS deb package:
   ```
   apt-get update
   apt-get install build-essential dkms
   ```
3. Install the SmartPQI DKMS DEB driver package using the following command (where #.#.#-### is the build number):

```
dpkg -i smartpqi-dkms_#.#.#-###_all.deb
```

4. Reboot system.

6.9 Installing on FreeBSD

To install the controller SmartPQI driver on FreeBSD:

1. Check whether the driver package is installed or not.
   ```
   # pkg info | grep smartpqi
   ```

2. Install the SmartPQI package by using the following command:
 - For FreeBSD 11:
     ```
     # pkg add smartpqi-amd64.txz
     ```
 - For FreeBSD 12 and 13:
     ```
     # pkg add smartpqi-amd.pkg
     ```

 Note: Upgrade the package if it already exists, using the following command.
 - For FreeBSD 11:
     ```
     # pkg upgrade smartpqi-amd64.txz
     ```
 - For FreeBSD 12 and 13:
     ```
     # pkg upgrade smartpqi-amd.pkg
     ```

3. Restart the system.
   ```
   # reboot
   ```

6.10 Installing on Citrix XenServer

Note: For Hypervisor 8.2 or later, if Hypervisor was installed on the system using the driver included in the release, then update the driver as necessary using the latest driver release from the Citrix support site.

Note: To copy the driver RPM file to XenServer, you must have access to a remote copy utility, such as WinSCP, putty, or Linux scp. You must have root privilege to install the driver.

To install the controller SmartPQI driver on Citrix XenServer (where #.#.#-### is the build number and the Citrix XenServer version is formatted as follows: xen7.6):

1. Using a remote copy utility, copy the driver RPM file to a local directory on XenServer. This example uses Linux scp to copy the driver to /tmp/smartpqi:
   ```
   scp citrix-smartpqi-#.#.###.<xen_version>.rpm root@<xen-server-ip>:/tmp/smartpqi
   ```

2. Install the driver module rpm:
   ```
   rpm -ivh /tmp/smartpqi/citrix-smartpqi-#.#.###.<xen_version>.rpm
   ```

3. Reboot your computer.
6.11 Installing on VMware

Note: The instructions in this section must be executed on the ESXi server’s command line. To access the command line:

1. Enable ESXi system console login. At ESXi system console, press **F2** and log in as root.
2. Select “Troubleshooting Options” and press **ENTER**.
3. Select “Enable ESXi shell”.
4. Select “Enable SSH”.
5. Press **ESC** to exit from the menus back to the ESXi splash screen.
6. Press **ALT + F1** to open the ESXi shell login screen.
7. Log in as root.

To install the controller SmartPQI driver on VMware:

1. Using a remote copy utility, such as Linux `scp`, copy the downloaded driver VIB package onto the ESXi server's tmp directory using the following command (where xxxxxxx is the version/build number):
 - For ESXi 7.0:
     ```
     # scp smartpqi-70.xxxx.0.xxx-1OEM.700.0.0xxxxxxx.x86_64.vib root@<esxi_server_address>:/tmp
     ```
 - For ESXi 8.0:
     ```
     # scp smartpqi-80.xxxx.0.xxx-1OEM.800.0.0xxxxxxx.x86_64.vib root@<esxi_server_address>:/tmp
     ```

2. On the ESXi server console, install the driver package (.vib file).
 - For ESXi 7.0:
     ```
     # esxcli software vib install -v file:/tmp/smartpqi-70.xxxx.0.xxx-1OEM.700.0.0xxxxxxx.x86_64 -maintenance-mode
     ```
 - For ESXi 8.0:
     ```
     # esxcli software vib install -v file:/tmp/smartpqi-80.xxxx.0.xxx-1OEM.800.0.0xxxxxxx.x86_64 -maintenance-mode
     ```

3. Restart the system.
   ```
   # reboot
   ```

4. After rebooting the system, check whether the driver package is installed. Compare the driver vib version shown by the command below with the version that was installed, to make sure they are the same.
   ```
   # esxcli software vib list | grep smartpqi
   ```

5. Restore system console security settings:
 a. At ESXi system console, press **F2** and log in as root.
 b. Select “Troubleshooting Options” and press **ENTER**.
 c. Select “Disable ESXi shell”.
 d. Select “Disable SSH”.
 e. Press **ESC** to exit back to the ESXi splash screen.
7. Managing SED

7.1 Overview

7.1.1 Introduction
A Self-Encrypting Drive (SED) encrypts data through disk-based encryption with a Media Encryption Key (MEK). The MEK is known only to the SED and cannot be recovered through forensic analysis. Smart controllers enable the use of SEDs as logical drives or physical drives.

The controller is responsible for managing and delivering the credentials required by the SED for enabling the disk-based encryption. SAS, SATA, and NVME drives that are compliant to the Opal 2.0 and Enterprise 1.01 industry standards are supported.

This section describes the functionality provided by the managed SED features.

This table lists the terms used in this section.

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credential</td>
<td>A value (password, key, or PIN) that grants access privilege</td>
</tr>
<tr>
<td>Encrypted</td>
<td>A value that is obfuscated with an algorithm</td>
</tr>
<tr>
<td>PIN</td>
<td>A value (up to 32 bytes) used as a credential on a SED</td>
</tr>
<tr>
<td>Key</td>
<td>A value input to a hash function used to create a PIN</td>
</tr>
<tr>
<td>Locking range</td>
<td>An LBA range of a SED that may have unique credentials</td>
</tr>
<tr>
<td>Identifier</td>
<td>The "name" component of a name—values pair as in Key Identifier: Key</td>
</tr>
<tr>
<td>RAID set</td>
<td>A drive or group of drives that contain one or more RAID volumes</td>
</tr>
<tr>
<td>Secured</td>
<td>A SED managed by the smart controller. The SED PIN is required to access user data.</td>
</tr>
<tr>
<td>Unsecured</td>
<td>A SED that is not managed by the smart controller</td>
</tr>
<tr>
<td>Password</td>
<td>This refers to the controller password. The controller password is not related to the SED PIN or the adapter master key</td>
</tr>
<tr>
<td>OFS</td>
<td>Original Factory State. This is the state of a newly manufactured SED. No security attributes or locking ranges are configured.</td>
</tr>
<tr>
<td>LKM</td>
<td>Local Key Management</td>
</tr>
<tr>
<td>RKM</td>
<td>Remote Key Management</td>
</tr>
<tr>
<td>UEFI</td>
<td>Unified Extensible Firmware Interface</td>
</tr>
<tr>
<td>HII</td>
<td>Human Interface Infrastructure</td>
</tr>
<tr>
<td>KMS</td>
<td>Key Management Service</td>
</tr>
</tbody>
</table>

7.2 Supported Features
The features described in the following sections are part of the managed SED feature set. Users can configure the managed SED feature settings through the UEFI HII and ARCCONF or maxView OS-based tools.

7.2.1 Supported SED Types
Adapters support attaching SAS, SATA, and NVMe SED (depending on the controller used) that are compliant with the following industry standards:

- TCG Storage Security Subsystem Class: Enterprise Standard version 1.01
- TCG Storage Security Subsystem Class: Opal standard version 2.01
7.2.2 Logical and Physical Drives
Adapters support using SEDs for logical and physical drives with the disk-based encryption feature enabled. Encryption-enabled drives are referred to as secured drives. The controller delivers the credentials to the SEDs and unlocks them. SEDs can also be used for logical and physical drives without the disk-based encryption feature turned on (like a non-SED device) and is referred to as non-secured drives.

Secured SED drives can also be used as boot drives or MaxCache logical drives. Adaptec Controllers also support coexistence of both secured and non-secured drives.

If a secure logical drive is used as a boot device in local key management mode and the controller password is enabled, the controller password must be entered from the HII utility every time the OS is booted.

Note: Mixing of different SED drive types (Opal and Enterprise) in a logical drive or maxCache array is not supported.

7.2.3 Local and Remote Key Management
The controller is responsible for delivering the credentials (PIN) to the SEDs. When the controller is managing SEDs, a Master Key is created during the initial setup. The Master Key is required to secure the SEDs and unlock the user data on managed SEDs.

Local Key Management
The Master Key is stored locally in the controller NVRAM. Optionally, a Master Key Identifier can also be entered at the time of Master Key creation.

Remote Key Management
The Master Key is generated and stored by key management server external to the controller. The controller will communicate with the server to retrieve the Master Key.

7.2.4 Controller Password
The controller password is an optional setting while configuring controller managed SED encryption.

Local Key Management
The controller password is intended to provide an extra level of security for local SED management and guards against theft of the server, adapter, and the SEDs. The adapter will not unlock any SED until the controller password input is provided in the configuration utility.

Remote Key Management
Controller password in remote key management mode serves as a backup option to unlock controller and encrypted devices in the case when the key management server becomes unavailable. Controller password option is only provided in HII utility. If controller password is configured, an encrypted version of the Remote Master Key is stored in the controller NVRAM. If the controller is not able to connect to the remote key server, the controller password can be used to retrieve and decrypt the Remote Master key from controller NVRAM.

7.2.5 Changing the Master Key in Local Key Management Mode
Updating the Master Key is a controller wide operation that applies to all secured SED drives.

7.2.6 Reverting to OFS
Controller management tools can revert a secured SED to the OFS. Secured logical drives must be deleted before returning to OFS, which also destroys all the data on the logical drive.

If the credential of the secured SED is unavailable, reverting to the OFS requires the 32-byte PSID from the drive's label to perform the revert operation.
7.2.7 Importing a Foreign Secured SED
A foreign SED is defined as a secured physical or logical drive that was previously attached to an Adaptec controller with a different credential than what is stored in the new Adaptec controller. The controller can detect that the drive was moved from a different controller and can import the drive to the new controller when the original credentials are entered. In remote key management mode, foreign controller managed SED devices whose Master key belongs to same key management server are automatically imported during boot.

Note: The controller cannot import secured SED volumes from non-Adaptec controllers.

7.2.8 Controller Factory Reset
Factory Reset deletes all secrets, keys, passwords, and identifiers on the controller and places the controller's encryption configuration in a factory new state. It does not modify the drives.

7.3 Workflows

7.3.1 Rules to Enable SED Management
These are the rules for enabling SED management:

• All SEDs in a secure logical drive must be the same SSC type (Enterprise, Opal, and so on).
• When creating a new secure logical drive, all SEDs must either be in OFS or owned by the controller.
• Unsecured drives must be in OK state before they can be secured.
• For Local Key Management—if controller password is enabled, ensure it is entered before performing any drive removal/re-insertion operations while the controller is powered on. Otherwise, the newly added SED will be in the Locked state without the credentials and will not transition the logical drive to the correct state such as Rebuild or Transformation.
• Once a secure volume is created using the SED management feature, down revving the firmware to a version that does not have support for SED management feature will render the secure volume inaccessible.
• Remote key management mode is provided for selection only if the system environment supports remote key management services and complies to the requirements of controller. Enabling remote key management mode requires reboot to complete the operation.

7.3.2 Securing an SED in Local Key Management Mode
Use the following steps to secure the SED:

1. Connect the supported SED to the controller.
2. Enable SED management from HII, ARCCONF, or maxView. The tools will generate a Master Key with an option to override with a custom Master Key. Optionally, the Master Key Identifier and the controller password can be provided.
3. Establish the controller's ownership of the SED by selecting OFS SEDs to be secured by the controller.

Upon subsequent power-on, the user must enter the controller password (if the controller password is enabled) to unlock the SED drives.

7.3.3 Securing an SED in Remote Key Management Mode
Use the following steps to secure the SED:

1. Connect the supported SED to the controller.
2. Refer to system vendor documentation to establish connection between system and remote key management server.
3. Enable SED management from HII, ARCCONF, or maxView™. Choose the key management mode as remote. Master key generated by the key management server will be used for encryption. Controller password can be provided optionally in HII. System reboot is required to complete operations in remote key management mode.

4. Establish the controller’s ownership of the SED by selecting OFS SEDs to be secured by the controller.

7.3.4 Setting Up SED Management with UEFI HII

SED management can be enabled from the controller management tools such as UEFI HII, ARCCONF CLI, or maxView GUI. The following sections describe how to set up SED management with the UEFI HII configuration utility. Refer to the ARCCONF or maxView user guides for details about using those tools.

7.3.4.1 Enabling Controller-Managed SED Encryption

Use the following steps to enable controller-managed SED encryption:

1. Boot to system BIOS setup utility and select the controller to enter HII configuration utility.
2. From the main menu, select Configure Controller Settings > Self-Encryption Drive (SED) Based Encryption Setup.
3. Select Key Management Mode as Local or Remote, then select Set/Change Managed SED Settings.
4. Select Configure Managed SED.
5. If configuring Local Key Management Mode, enter appropriate input to Master Key Identifier and Master Key fields.

 Note: Write down the Master Key Identifier and Master Key and keep in a safe location. If it gets lost or forgotten, the only recovery option is to revert SEDs with PSID, which will result in data loss.

 - Master Key Identifier is a hint to the master key used for encryption. The master key identifier must be 1 to 32 characters long for Local Key Management mode, using only ASCII characters. A default identifier is provided which can be updated by entering the input.
 - Master Key is used by the key manager for encryption. A valid key must be 8 to 32 characters long with ASCII characters only and contain a combination of alphanumeric characters including, at least one upper-case character, at least one lower-case character, at least one numeric character, and one non-alphanumeric character (such as '#' or '$').
 - Record the Master Key. A method does not exist for recovering or displaying the Master Key once the value is set. Failure to provide the Master Key may result in encrypted data being inaccessible.

6. Controller Password is an optional setting. If setting controller password is required, then provide input in the Set/Change Controller Password field and select Enabled for the Controller Password field.

 - If Controller Password is set in Local Key Management mode, all the encrypted devices will be offline at startup. The user must enter the controller password to bring the encrypted devices online. A valid password must be 8 to 32 characters long with ASCII characters only.
 - If Controller Password is set along with remote key management mode and on any of the subsequent reboot if controller detects that the key management server is unavailable, then an unlock option will be provided in the UEFI HII menu. Controller can only unlock encrypted devices if the key management server is made available or by entering a valid controller password.

7. Select Submit Changes
7.3.4.2 Changing the Master Key in Local Key Management Mode

Changing the Master Key results in generating a new credential for all the attached SEDs. The user may change the Master Key by supplying the current Master Key, the new Master Key and a new Master Key Identifier. It is strongly recommended to change the Master Key Identifier when changing the Master Key. If a new Master Key Identifier is not provided, the old identifier is retained.

Use the following steps to change the Master Key:
1. Boot to system BIOS setup utility and select the controller to enter the HII configuration utility.
2. From the main menu, select Configure Controller Settings > Self-Encryption Drive (SED) Based Encryption Setup.
3. Select Set/Change Managed SED Settings.
4. Select Configure Managed SED.
5. Enter new Master Key Identifier and new Master Key into fields.
6. Select Submit Changes.
7. Enter old Master Key to authenticate the operation.
8. Select Submit Changes.

7.3.4.3 Changing Controller Password

Use the following steps to change the controller password:
1. A valid controller password must be 8 to 32 characters long with ASCII characters. Boot to system BIOS setup utility and select controller to enter HII configuration utility.
2. From the main menu, select Configure Controller Settings > Self-Encryption Drive (SED) Based Encryption Setup.
3. Select Set/Change Managed SED Settings.
4. Select Configure Managed SED.
5. Enter input for Set/Change Controller Password and select Enabled for Controller Password field.
6. Select Submit Changes.
7. Local key management mode requires additional authentication using Master key, enter current Master Key to authenticate the operation.
8. Select Submit Changes.

7.3.4.4 Unlocking Controller

When Controller Password is set in local key management mode, data on the encrypted devices will be offline during system boot. The controller password must be entered to unlock the controller and bring the encrypted devices online. After three wrong attempts, the controller password will be locked out for some time. If controller password is set along with remote key management mode and on any of the subsequent reboot if controller detects that the key management server is unavailable, then unlock option is provided in the UEFI HII menu. Controller can only unlock encrypted devices if the key management server is made available or a valid controller password is entered.

1. Boot to system BIOS setup utility and select the controller to enter the HII configuration utility.
2. From the main menu, select Configure Controller Settings > Self-Encryption Drive (SED) Based Encryption Setup.
3. Select Unlock Controller.
4. Enter controller password, then select Submit.
Note: In local key management mode, it is recommended to supply the password, before performing any operations such as removing or adding the drives. Without the password, the controller will not be able to unlock the drive to perform the RAID operations such as rebuild, background parity initialization, and consistency check operations.

7.3.5 HBA Physical Drive Operations
This section details physical drive operations for HBAs.

7.3.5.1 Taking Ownership of SED
Use the following steps to take ownership of the SED:
1. Boot to system BIOS setup utility and select controller to enter HII configuration utility.
2. From the main menu, select Configure Controller Settings > Self-Encryption Drive (SED) Based Encryption Setup.
3. Select Take SED Ownership.
4. Select devices that you want the controller to manage their SED encryption settings.
5. Select Submit Changes.

7.3.5.2 Revert
Revert destroys all user data, returns the SED to OFS and deletes any controller related data present in the drives.

The adapter has two versions of the Revert operation available: Microchip Revert and Revert with PSID.

7.3.5.3 Adaptec Revert
Adaptec Revert is performed on secure unconfigured SED owned by the Adaptec controller.
1. Boot to system BIOS setup utility and select controller to enter HII configuration utility.
2. From the main menu, select Configure Controller Settings > Self-Encryption Drive (SED) Based Encryption Setup.
3. Select Revert Managed SED to Original Factory State.
4. Select the devices that you want to revert.
5. Select Submit Changes.

7.3.5.4 Revert with PSID
Revert with PSID can return any SED to OFS. It should not be used on the Adaptec controller-managed SEDs unless they are foreign and the SED Key is lost.
1. Boot to system BIOS setup utility and select controller to enter HII configuration utility.
2. From the main menu, select Disk Utilities.
3. Select the SED drive to revert using PSID.
4. Select option Revert to Original Factory State using PSID.
5. Enter PSID of the drive.
6. Select Submit Changes.

7.3.5.5 Importing Foreign SED
Use the following steps to import foreign SEDs:
1. Boot to system BIOS setup utility and select controller to enter HII configuration utility.
2. From the main menu, select Configure Controller Settings > Self-Encryption Drive (SED) Based Encryption Setup.
3. Select Import Foreign SED.
4. Select the devices that you want to import.

5. **Enter Foreign SED Master Key.** For importing the devices configured on foreign remote key management. The hexadecimal key value can be provided as input after retrieving it from the key management server.

6. Select **Submit Changes.**

Note: In remote key management mode, foreign controller managed SED devices whose Master key belongs to same key management server are automatically imported during boot.

7.3.6 Disabling SED Management
Disabling SED management results in the loss of data. Prior to disabling the SED management, all the secure logical drives must be deleted. Once disabled, all secure physical drives are reverted to OFS. Any secure foreign physical drives will transition to Otherwise Owned state.

1. Boot to system BIOS setup utility and select controller to enter HII configuration utility.
2. From the main menu, select **Configure Controller Settings > Self-Encryption Drive (SED) Based Encryption Setup.**
3. Select **Key Management Mode** as **Disabled**, then select **Set/Change Managed SED Settings.**
4. Select **Submit Changes.**

7.3.7 Factory Reset
Factory Reset will delete all the SED management–related information (Master Key, Controller Password, etc.) from the controller and restore the controller to the factory state. SED management must be disabled as described in Section 7.3.6. **Disabling SED Management** prior to resetting the controller to factory settings.

7.4 Troubleshooting

7.4.1 Lost Controller Password in Local Key Management Mode
When the Controller Password feature is enabled and the password is forgotten, the Controller Password feature can be disabled by changing the SED management configuration. Configuration changes require the user to enter the Master Key, which was generated at the time of SED enablement (see 7.3.4.1. **Enabling Controller-Managed SED Encryption** for details).

7.4.2 Moving SEDs to a Different Controller While Key Change Is in Progress
Moving a SED to another server or adapter while a key change is in progress should only occur if there is a server or controller failure. If the server or controller is still running, then wait until the key change is completed before the move occurs.

The controller can detect that the moved SEDs are foreign, and it was undergoing a key change. This is a case of a Foreign Import and an interrupted key change scenario. The general handling is to follow the Foreign Import process; however, in this case, the user must provide both the old and new Master Keys.

The management tools support retrieving both the Key Identifier and the Reset Key Identifier from the foreign SED. After both the old and new foreign keys are provided, the controller completes the key change that was in progress prior to the move and then execute the additional key change to import the foreign SEDs.

7.4.3 Moving SEDs to a New Controller when the Server Is Powered Off with Controller Password Enabled
The following use cases describe the process for moving SEDs to a new controller when the server is powered off with the controller password enabled.
Case 1: If the moved SEDs are MCHP-owned, but do not have any logical volumes on it, the SEDs will be discovered as foreign SEDs and will be in the Data Locked state. Once adapter password is provided, the foreign SEDs will be in locked state. The SEDs are not visible to the host. After the user imports the foreign SEDs, they will be unlocked, Microchip-owned. Now they are exposed to the host. See 7.3.5.5. Importing Foreign SED.

Case 2: If the moved SEDs are MCHP-owned, and have secured logical volumes on it, the volume will be in data locked before adapter password is provided. Once adapter password is given, the secured logical volumes become locked. After user imports all the foreign SEDs, the secured volumes will be in OK state.

Note: This applies to Local Key Management only.

7.4.4 Failure in Enabling Remote Key Management Mode SED Encryption/Unlocking SED
In remote key management mode if controller is unable to retrieve the key due to key communication errors then the SED encryption will remain disabled and existing encrypted devices will become offline.

Ensure the system supports key management service, configured correctly and complies with controller requirements. Check Controller Information menu on key management server status, fix any connection issues.

Ensure PCIe UEFI option rom execution is in enabled state.

If controller password is set and the controller report key communication error with KMS then the controller can be unlocked by providing controller password input in HII.
8. **Solving Problems**

This section provides basic troubleshooting information and solutions for solving problems with your HBA 1100 Series Host Bus Adapter.

8.1 **Troubleshooting Checklist**

If you encounter difficulties installing or using your HBA 1100 Series Host Bus Adapter, check these items first:

- With your computer powered off, check the connections to each disk drive, power supply, enclosure, and so on.
- Try disconnecting and reconnecting disk drives from the adapter.
- Check that your adapter is installed in a compatible PCIe expansion slot. To verify the bus compatibility of your adapter, see About Your Host Bus Adapter.
- Ensure that your adapter is firmly seated and secured in the PCIe expansion slot.
- If your adapter is not detected during system boot, try installing it in a different compatible expansion slot. (See Installing the Host Bus Adapter for instructions.)
- Did the driver install correctly? It may need to be reloaded after a reboot or kernel update.
- If you have external disk drives (or other devices), are they powered on?
- Check the Release Notes for compatibility issues and known problems.

If you are still unable to resolve a problem, contact Microchip Support.

8.2 **Resetting the Adapter**

You may need to reset your HBA 1100 Series adapter if it becomes inoperable or if a firmware upgrade is unsuccessful. HBA 1100 Series adapters support a reset protocol called HDA mode flash. For information about HDA mode, contact your support representative. To locate the HDA mode jumper on your adapter, see the board illustrations in About Your Host Bus Adapter.
9. Using the Microchip Configuration Utility

9.1 Running the Microchip SAS/SATA Configuration Utility: Ctrl-A or UEFI/HII?

Your Adaptec HBA 1100 supports two interfaces to the BIOS-level controller configuration options described in this section: Ctrl-A and UEFI/HII.

On servers that support the Unified Extensible Firmware Interface, or UEFI (version 2.10 or higher), the BIOS-level configuration options are presented with a UEFI/HII interface (Human Interaction Infrastructure), rather than Microchip's legacy Ctrl-A interface. UEFI/HII provides an architecture-independent mechanism for initializing add-in cards, like the HBA 1100, and rendering contents to the screen in a uniform way.

To access the HBA 1100 configuration options with the Ctrl-A interface, start or restart your computer. When prompted, press Ctrl+A, then select your controller from the list. The Ctrl-A main menu is displayed.

In the UEFI/HII interface, the server’s standard BIOS provides access to the HBA 1100 configuration options. How the BIOS is accessed varies, depending on the server manufacturer, but typically it’s started by simply pressing DEL. Once setup is entered, navigate to the "Advanced" menu (below, left), then select the controller from the list. The UEF/HII main menu is displayed (below, right).

Note: The Administration menu is available only with the UEFI/HII interface.

In both interfaces, all the tools are menu-based and instructions for completing tasks appear on-screen. Menus can be navigated using the arrows, Enter, Esc, and other keys on the keyboard.

This appendix provides instructions for navigating and completing tasks with the UEFI/HII interface. To complete tasks with the Ctrl-A interface:

- Refer to the on-screen instructions for keyboard navigation and selection options.
- Refer to the option descriptions in this section for details about individual configuration settings.

9.2 Modifying HBA 1100 Settings

For the HBA 1100, the following options are available from the Configure Controller Settings menu.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modify Controller Settings</td>
<td>Drive Write Cache State</td>
<td>Enables and disables physical drive write cache for all drives on the controller.</td>
</tr>
<tr>
<td>Modify Spare Activation Mode</td>
<td>Spare Activation Mode</td>
<td>No options available.</td>
</tr>
<tr>
<td>Manage Power Settings</td>
<td>Survival Mode</td>
<td>Enables and disables Survival mode.</td>
</tr>
<tr>
<td>Out of Band Messaging Settings</td>
<td>Out of Band Messaging Settings</td>
<td>Use this option to configure the Out of Band Messaging Interface to PBSI, MCTP, or Disable. See 9.3. Out of Band Messaging Settings.</td>
</tr>
<tr>
<td>Self-Encryption Drive (SED) Based Encryption Setup</td>
<td>Configure Managed SED</td>
<td>Key management mode. Set or change managed SED settings.</td>
</tr>
<tr>
<td>Modify Expander Minimum Scan Duration</td>
<td>Modify Expander Minimum Scan Duration</td>
<td>Define the scan duration in seconds.</td>
</tr>
</tbody>
</table>
9.3 Out of Band Messaging Settings

Use this option to configure the Out of Band Messaging Interface to PBSI, MCTP, or Disable.

Note: This option is supported in the UEFI/HII interface only.

To change the Out of Band Messaging settings for a controller:

1. Start the Microchip SAS/SATA Configuration Utility in UEFI mode.
2. Select the controller, then press Enter.
3. From the main menu, select Configure Controller Settings.
5. Select OOB Interface and press Enter.
6. From the pop-up menu, select PBSI, MCTP, or Disable OOB interface.
7. To configure Out of Band Messaging for PBSI, set these parameters:

<table>
<thead>
<tr>
<th>PBSI Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMBus Slave Address</td>
<td>Sets the SMBus (System Management Bus) slave address of the controller to a valid hexadecimal address value.</td>
</tr>
<tr>
<td>SMBus Clock Speed</td>
<td>Sets the SMBus clock speed:</td>
</tr>
<tr>
<td></td>
<td>• Feature Disabled (Default)</td>
</tr>
<tr>
<td></td>
<td>• SMBus clock speed 100 kHz</td>
</tr>
<tr>
<td></td>
<td>• SMBus clock speed 400 kHz</td>
</tr>
<tr>
<td>SMBus Clock Stretching</td>
<td>Sets the SMBus Clock Stretching mode:</td>
</tr>
<tr>
<td></td>
<td>• Enable: Enables SMBus clock stretching</td>
</tr>
<tr>
<td></td>
<td>• Disable: Disables SMBus clock stretching</td>
</tr>
</tbody>
</table>

8. To configure Out of Band Messaging for MCTP, set these parameters:

<table>
<thead>
<tr>
<th>MCTP Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMBus Slave Address</td>
<td>Sets the SMBus (System Management Bus) slave address of the controller to a valid hexadecimal address value. (For valid range, refer to the Management Component Transport Protocol (MCTP) SMBus/I2C Transport Binding Specification document.)</td>
</tr>
<tr>
<td>SMBus Device Type</td>
<td>Sets the SMBus Device Type:</td>
</tr>
<tr>
<td></td>
<td>• Default</td>
</tr>
<tr>
<td></td>
<td>• Fixed</td>
</tr>
<tr>
<td></td>
<td>• ARP (Address Resolution Protocol)</td>
</tr>
<tr>
<td>SMBus Physical Channel</td>
<td>Sets the SMBus Channel mode:</td>
</tr>
<tr>
<td></td>
<td>• Enable: Enables SMBus channel</td>
</tr>
<tr>
<td></td>
<td>• Disable: Disables SMBus channel</td>
</tr>
<tr>
<td>Use Static EIDs during Initialization</td>
<td>Sets the Static End Point Identifier (EID) mode:</td>
</tr>
<tr>
<td></td>
<td>• Enable: Enables Static EID</td>
</tr>
<tr>
<td></td>
<td>• Disable: Disables Static EID</td>
</tr>
<tr>
<td>VDM Discovery Notify</td>
<td>Sets the Vendor Defined Message (VDM) discovery notification mode:</td>
</tr>
<tr>
<td></td>
<td>• Enable: Enables VDM discovery notification</td>
</tr>
<tr>
<td></td>
<td>• Disable: Disables VDM discovery notification</td>
</tr>
</tbody>
</table>

9. Select Submit Changes.

9.4 Viewing Disk Drive Properties

Use the Disk utilities to view the disk drives on a controller and view disk drive properties.
To view disk drive properties:

1. Start the Microchip SAS/SATA Configuration Utility in UEFI mode (see 9.1. Running the Microchip SAS/SATA Configuration Utility: Ctrl-A or UEFI/HII?).
2. Select your controller, then press Enter.
3. From the main menu, select Disk Utilities.
4. Use the arrow keys to select a disk drive.
5. Press Esc to return to the previous menu.

9.5 Device Information

The Device Information menu provides details about the device, such as the Model, Serial Number, and Device Type. To view the device information, start the Microchip Configuration Utility, select the controller, then press Enter. From the main menu, select Disk Utilities, select the disk drive, then press Enter.

9.6 Identifying a Disk Drive

You can use the disk utilities to physically locate and identify a disk drive by turning on its Identification LED.

To identify a disk drive:

1. From the main menu, select Disk Utilities.
2. Select the disk drive to locate, then press Enter.
3. Select Identify Device, then enter a value into Identification Duration (seconds). This value determines how long the LED on the device will remain on.
4. Select Start, then press Enter.
5. To turn off the Identification LED, press Esc to return to the previous menu, select Stop and press Enter.

9.7 Updating Drive Firmware

Use the disk utilities to flash a hard drive with new firmware.

To update drive firmware:

1. Copy the firmware binary file to a USB flash drive, then connect the USB drive to the machine. Alternatively, copy the firmware binary to a known location on your machine.
2. From the main menu, select Disk Utilities, then select Update Drive Firmware.
3. Select a disk drive, then enter the firmware update mode:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mode 5</td>
<td>Download and Activate</td>
</tr>
<tr>
<td>Mode 7</td>
<td>Download in Multiple Transfers</td>
</tr>
<tr>
<td>Mode E</td>
<td>Download in Multiple Transfers but Do Not Activate</td>
</tr>
<tr>
<td>Mode E+F (HBA Mode only)</td>
<td>Download in Multiple Transfers and Activate</td>
</tr>
</tbody>
</table>

4. Enter the Transfer Size, in 512 byte-increments. The default transfer size is 32768 (32K) bytes. The maximum transfer size is 262144 (256K) bytes.
 Note: Transfer Size is not applicable for Mode 5.
5. Select Proceed.
6. Select the storage device where the firmware binary file is located (the USB drive, for instance), navigate the folder hierarchy, then select the firmware binary file. The firmware is sent to the hard drive.
7. When the update is complete, reboot the server.

9.8 Clearing Configuration Meta-data
Use the disk utilities to clear the controller configuration meta-data from any drive that is not part of an array.

Note: This option is enabled only if the selected drive contains controller configuration meta-data. A drive may contain configuration meta-data even if it is not part of an array.

To clear the configuration meta-data from a drive:
1. From the main menu, select Disk Utilities.
2. Select a disk drive with configuration meta-data, then press Enter.
3. Select Clear Configuration Metadata, then select Continue.

9.9 Setting the Bootable Device(s) for Legacy Boot Mode
Note: This option is applicable only for Legacy Boot Mode.
This option sets the primary and secondary physical boot device(s) for Legacy Boot Mode. The secondary boot device acts as a failover to the primary boot device.

To set the physical boot device(s) for a controller:
1. From the menu, select Set Bootable Device(s) for Legacy Boot Mode, then select Select Bootable Physical Drive.
2. To set the default bootable device, select a physical drive from the list, then select Set as Primary Bootable Device.
3. To set the secondary bootable device, select a physical drive from the list, then select Set as Secondary Bootable Device.

Note: To clear previously set boot devices, select Clear Bootable Device(s).

9.10 Updating the HBA 1100 Firmware
To update the HBA 1100 firmware:
1. Copy the firmware binary file (.bin) to a USB flash drive, then connect the USB drive to the machine. Alternatively, copy the firmware binary to a known location on your machine.
2. From the main menu, select Administration, then select Flash Controller Firmware.
3. Select Continue with flashing Firmware.
4. Select the storage device where the firmware binary file is located (the USB drive, for instance), navigate the folder hierarchy, then select the firmware binary file.
 The firmware is sent to the controller.
5. When the update is complete, reboot the server.

9.11 Creating a Support Archive
Use this option to save configuration and status information to help Customer Support diagnose a problem with the system. Saved information includes device logs, drive logs, event logs, error logs, controller logs, and statistics.

To create a support archive:
1. From the main menu, select Administration, then select Save Support Archive.
2. Select the device where the support archive information will be gathered and stored, then press Enter.
 The system gathers the logs and statistics for the device and displays the path where the information is saved.
3. Press any key to complete the operation and exit.
10. Installing the SmartPQI Drivers from Source

This section explains how to build and install the SmartPQI drivers from source code for the supported Linux OSes, including how to install the packages using the installation DVD as the repository.

10.1 Installation Instructions for Supported Linux OSes

This section explains how to install the driver from source for the following Linux OSes:

- RHEL OS images
- SuSE OS images

Use the following command to determine the type of OS installed on a Linux system:

```
# lsb_release -a
```

Note: The following instructions assume you are installing the packages from the RHEL or SuSE repositories; if not, refer to 10.2. Using the Installation DVD as the Repository.

RHEL OS Images

The instructions below apply to the following RHEL OS images:

- Red Hat® Enterprise Linux 7.4, 7.3, 7.2, 7.1, 7.0 (64-bit only)
- Red Hat® Enterprise Linux 6.9, 6.8, 6.7, 6.6 (64-bit only)

To install the SmartPQI driver from source for RHEL-based OS images:

1. Build the driver from the source using the following command:
   ```
   $ sudo su
   ```
 Note: You must have administrator privileges to perform the installation steps.

2. Install the following driver dependency packages and reboot the system if necessary:
   ```
   # yum install kernel kernel-devel kernel-headers gcc
   ```

3. Extract the driver source code from the source tar.bz2 file by using the following command:
   ```
   # tar –jxvf smartpqi-1.1.2-125.tar.bz2
   ```

4. Compile the smartpqi.ko file by using the following command:
   ```
   # cd smartpqi-1.1.2
   # make -f Makefile.alt
   ```
 Note: After the compilation you will get a smartpqi.ko driver file, which is the driver module.

5. Use the following command to backup the existing inbox driver:
   ```
   # mv /lib/modules/`uname -r`/kernel/drivers/scsi/smartpqi/smartpqi.ko \
   /lib/modules/`uname -r`/kernel/drivers/scsi/smartpqi/smartpqi.ko.org
   ```

6. Copy the smartpqi.ko driver file to the destination by using the following command:
   ```
   # cp ./smartpqi.ko /lib/modules/`uname -r`/kernel/drivers/scsi/smartpqi
   ```

7. Use the following command to rebuild initramfs process with the newly installed smartpqi driver:
   ```
   # dracut -v -f --add-drivers smartpqi
   ```
 Note: RHEL provides dracut command to place the newly installed smartpqi.ko driver modules into the initramfs file to include them in the Linux kernel.

8. Reboot the system to load the new initramfs, which will contain the newly installed smartpqi.ko driver.

SuSE OS Images

The instructions below apply to the following SuSE OS images:
Installing the SmartPQI Drivers from Source

To install the SmartPQI driver from source for SuSE OS images:

1. Build the driver from the source using the following command:

   ```
   $ sudo su
   
   Note: You must have administrator privileges to perform the installation steps.
   ```

2. Install the following driver dependency packages and reboot the system if necessary:

   ```
   # zypper install kernel-devel gcc make
   ```

3. Extract the driver source code from the source tgz file by using the following command:

   ```
   # tar –jxvf smartpqi-1.1.2-125.tar.bz2
   ```

4. Compile the smartpqi.ko file by using the following command:

   ```
   # cd smartpqi-1.1.2
   # make -f Makefile.alt
   
   Note: After the compilation you will get a smartpqi.ko driver file, which is the driver module.
   ```

5. Backup the already existing inbox driver.

   ```
   # mv /lib/modules/`uname -r`/kernel/drivers/scsi/smartpqi/smartpqi.ko /
   /lib/modules/`uname -r`/kernel/drivers/scsi/smartpqi/smartpqi.ko.org
   ```

6. Copy the kernel driver file to the destination by using the following command:

   ```
   # cp ./smartpqi.ko /lib/modules/`uname -r`/kernel/drivers/scsi/smartpqi
   ```

7. Use the following command to rebuild initramfs process with the newly installed smartpqi driver:

   ```
   # mknitrd -v -m smartpqi
   
   Note: SLES provides mknitrd command to place the newly installed smartpqi.ko driver modules into the initramfs file to include them in the Linux kernel.
   ```

8. Reboot the system to load the new initramfs, which will contain the newly installed smartpqi.ko driver.

10.2 Using the Installation DVD as the Repository

Follow the instructions in this section to install the packages required to compile the driver modules using the OS installation DVD as the repository. In these procedures, the DVD is used as the package repository.

Installing Packages on a RHEL-based OS

The following steps install the packages required to compile the driver modules from source on a RHEL-based OS.

1. Execute the following command to become a super user to edit and make changes to various system files:

   ```
   $ sudo -i
   
   Note: Super user rights are required to edit and make changes in various system files.
   ```

2. Get the name of the installation DVD entry in /dev directory. The DVD is visible as /dev/srX. Use the following command to list all the scsi devices on the system.

   ```
   # lsscsi
   ```

3. Once the DVD name is confirmed, create a location to mount the DVD, for example:

   ```
   # mkdir /media/iso
   ```

4. Mount the DVD to the /media/iso directory by using the following command:

   ```
   /dev/srX /media/iso udf,iso9660 noauto,user,ro 0 0
   ```
5. Use the following command to mount the DVD, once the entry is placed in /etc/fstab:

 # mount /dev/srX

6. Create a `dvd.repo` to use the packages from the mounted DVD location:

   ```
   [dvd]
   name=Red Hat Enterprise Linux Installation DVD
   baseurl=file:///media/iso
   enabled=1
   ```

7. Import the GPG keys for YUM to authenticate the RPM packages in the DVD:

   ```
   # rpm --import /media/iso/RPM-GPG*
   ```

8. Run the following commands to enable the DVD repository:

   ```
   # yum repolist
   # yum install
   ```

Installing Packages on a SuSE-based OS

The following steps install the packages required to compile the driver modules from source on a SuSE-based OS.

1. Execute the following command to become a super user:

 $ sudo su

 Note: Super user rights are required to edit and make changes in various system files.

2. Get the name of the installation DVD entry in /dev directory. The DVD is visible as /dev/srX. Use the following command to list all the scsi devices on the system.

   ```
   # lsscsi
   ```

3. Once the DVD name is confirmed, create a location to save the DVD image, for example:

   ```
   # mkdir /var/iso
   ```

4. Create an ISO image from the installation disk. Once the DVD image is saved, zypper uses the ISO as an installation service and install the packages from it by using the following command:

   ```
   # dd if=/dev/srX of=/var/iso/sles.iso
   ```

5. Once the installation disk is saved as an ISO image, set it as an installation service by using the following command:

   ```
   # zypper sa "iso:?iso=/var/iso/sles.iso" "SLES xy spz"
   
   Where, xy z is the SLES distribution ID eg 10 sp1.
   ```

6. Run the following command after adding the ISO image as an installation service:

   ```
   # zypper s1
   ```
11. **Safety Information**

To ensure your personal safety and the safety of your equipment:

- Keep your work area and the computer clean and clear of debris.
- Before opening the system cabinet, unplug the power cord.

11.1 **Electrostatic Discharge (ESD)**

> **CAUTION**

ESD can damage electronic components when they are improperly handled, and can result in total or intermittent failures. Always follow ESD-prevention procedures when removing and replacing components.

To prevent ESD damage:

- Use an ESD wrist or ankle strap and ensure that it makes skin contact. Connect the equipment end of the strap to an unpainted metal surface on the chassis.
- Avoid touching the adapter against your clothing. The wrist strap protects components from ESD on the body only.
- Handle the adapter by its bracket or edges only. Avoid touching the printed circuit board or the connectors.
- Put the adapter down only on an antistatic surface such as the bag supplied in your kit.
- If you are returning the adapter to Microchip Product Support, put it back in its antistatic bag immediately.

If a wrist strap is not available, ground yourself by touching the metal chassis before handling the adapter or any other part of the computer.
12. Technical Specifications

12.1 Environmental Specifications

Notes: HBA 1100 Series adapters require adequate airflow to operate reliably. Forced airflow is required. The recommended airflow values are:

- HBA 1100-4i/8i/8e/16i/16e/8i8e—200 LFM (linear feet per minute), minimum.
- HBA 1100-24i—250 LFM (linear feet per minute), minimum.

<table>
<thead>
<tr>
<th>Notes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature with forced airflow</td>
<td>0 °C to 55 °C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10% to 90%, non-condensing</td>
</tr>
<tr>
<td>Altitude</td>
<td>Up to 3,000 meters</td>
</tr>
</tbody>
</table>

Note: Ambient temperature is measured 1” from the HBA processor.

12.2 DC Power Requirements

<table>
<thead>
<tr>
<th>Adapter Model</th>
<th>Bus Type</th>
<th>Description</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptec HBA 1100-8i</td>
<td>PCIe</td>
<td>DC Voltage</td>
<td>3.3 V ± 9%, 12 V ± 8%, 3.3 V ± 9% (auxiliary power from PCIe slot)</td>
</tr>
<tr>
<td>Adaptec HBA 1100-4i</td>
<td>PCIe</td>
<td>DC Voltage</td>
<td>3.3 V ± 9%, 12 V ± 8%, 3.3 V ± 9% (auxiliary power from PCIe slot)</td>
</tr>
<tr>
<td>Adaptec HBA 1100-8e</td>
<td>PCIe</td>
<td>DC Voltage</td>
<td>3.3 V ± 9%, 12 V ± 8%, 3.3 V ± 9% (auxiliary power from PCIe slot)</td>
</tr>
<tr>
<td>Adaptec HBA 1100-16i</td>
<td>PCIe</td>
<td>DC Voltage</td>
<td>3.3 V ± 9%, 12 V ± 8%, 3.3 V ± 9% (auxiliary power from PCIe slot)</td>
</tr>
<tr>
<td>Adaptec HBA 1100-24i</td>
<td>PCIe</td>
<td>DC Voltage</td>
<td>3.3 V ± 9%, 12 V ± 8%, 3.3 V ± 9% (auxiliary power from PCIe slot)</td>
</tr>
<tr>
<td>Adaptec HBA 1100-8i8e</td>
<td>PCIe</td>
<td>DC Voltage</td>
<td>3.3 V ± 9%, 12 V ± 8%, 3.3 V ± 9% (auxiliary power from PCIe slot)</td>
</tr>
<tr>
<td>Adaptec HBA 1100-16e</td>
<td>PCIe</td>
<td>DC Voltage</td>
<td>3.3 V ± 9%, 12 V ± 8%, 3.3 V ± 9% (auxiliary power from PCIe slot)</td>
</tr>
</tbody>
</table>

12.3 Current and Power Requirements

<table>
<thead>
<tr>
<th>Adapter Model</th>
<th>Typical Power</th>
<th>Typical Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptec HBA 1100-8i</td>
<td>8.2 W</td>
<td>0.2A @ 3.3 VDC; 0.63A @ 12.0 VDC</td>
</tr>
<tr>
<td>Adaptec HBA 1100-4i</td>
<td>7.23 W</td>
<td>1.1A @ 3.3 VDC; 0.3A @ 12.0 VDC</td>
</tr>
<tr>
<td>Adaptec HBA 1100-8e</td>
<td>8.2 W</td>
<td>0.2A @ 3.3 VDC; 0.63A @ 12.0 VDC</td>
</tr>
<tr>
<td>Adaptec HBA 1100-16i</td>
<td>11.00 W</td>
<td>0.77 A @ 3.3 VDC; 0.70 A @ 12.0 VDC (3.3 V auxiliary current consumption approximately 50 mA)</td>
</tr>
<tr>
<td>Adaptec HBA 1100-24i</td>
<td>13.80 W</td>
<td>0.92 A @ 3.3 VDC; 0.90 A @ 12.0 VDC (3.3 V auxiliary current consumption approximately 50 mA)</td>
</tr>
<tr>
<td>Adaptec HBA 1100-16e</td>
<td>11.93 W</td>
<td>0.78 A @ 3.3 VDC; 0.78 A @ 12.0 VDC (3.3 V auxiliary current consumption approximately 50 mA)</td>
</tr>
<tr>
<td>Adaptec HBA 1100-8i8e</td>
<td>11.93 W</td>
<td>0.78 A @ 3.3 VDC; 0.78 A @ 12.0 VDC (3.3 V auxiliary current consumption approximately 50 mA)</td>
</tr>
</tbody>
</table>
13. Revision History

Table 13-1. Revision History

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>06/2023</td>
<td>Updated for SR 2.8.0.</td>
</tr>
<tr>
<td>D</td>
<td>11/2022</td>
<td>Updated for SR 2.7.2.</td>
</tr>
<tr>
<td>C</td>
<td>07/2022</td>
<td>Updated for SR 2.7.0. Added Managing SED section.</td>
</tr>
<tr>
<td>B</td>
<td>02/2022</td>
<td>Updated for SR 2.6.6.</td>
</tr>
<tr>
<td>A</td>
<td>11/2021</td>
<td>Initial release in Microchip template; Assigned Microchip literature number DS-00004281A, which replaces the previous Microsemi literature number ESC-2161232.</td>
</tr>
<tr>
<td>Previous Releases 1–8</td>
<td>10/2016 – 03/2021</td>
<td>Previous releases. Contact Microchip for release details.</td>
</tr>
</tbody>
</table>
Microchip Information

The Microchip Website
Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

• **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software

• **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing

• **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service
Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support
Users of Microchip products can receive assistance through several channels:

• Distributor or Representative
• Local Sales Office
• Embedded Solutions Engineer (ESE)
• Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature
Note the following details of the code protection feature on Microchip products:

• Microchip products meet the specifications contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.

• Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice
This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure
that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP’S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer’s risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maxStylus, maxTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.
Quality Management System
For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.
Worldwide Sales and Service

<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office</td>
<td>Australia - Sydney</td>
<td>India - Bangalore</td>
<td>Austria - Wels</td>
</tr>
<tr>
<td>2355 West Chandler Blvd.</td>
<td>Tel: 61-2-9868-6733</td>
<td>Tel: 91-80-3090-4444</td>
<td>Tel: 43-7242-2244-39</td>
</tr>
<tr>
<td>Chandler, AZ 85224-6199</td>
<td>China - Beijing</td>
<td>India - New Delhi</td>
<td>Fax: 43-7242-2244-393</td>
</tr>
<tr>
<td>Tel: 480-792-7200</td>
<td>Tel: 86-10-8569-7000</td>
<td>India - Pune</td>
<td>Denmark - Copenhagen</td>
</tr>
<tr>
<td>Fax: 480-792-7277</td>
<td>China - Chengdu</td>
<td>Tel: 91-11-4160-8631</td>
<td>Tel: 45-4485-5910</td>
</tr>
<tr>
<td>Technical Support:</td>
<td>China - Chongqing</td>
<td>India - Pune</td>
<td>Fax: 45-4485-2829</td>
</tr>
<tr>
<td>www.microchip.com/support</td>
<td>China - Dongguan</td>
<td>Japan - Osaka</td>
<td>Finland - Espoo</td>
</tr>
<tr>
<td>Web Address:</td>
<td>Tel: 86-28-8665-5511</td>
<td>Tel: 81-6-6152-7160</td>
<td>Tel: 358-9-4520-820</td>
</tr>
<tr>
<td>Atlanta</td>
<td>China - Guangzhou</td>
<td>Japan - Tokyo</td>
<td>France - Paris</td>
</tr>
<tr>
<td>Duluth, GA</td>
<td>Tel: 86-20-8755-8029</td>
<td>Tel: 81-3-6880-3770</td>
<td>Tel: 33-1-69-53-63-20</td>
</tr>
<tr>
<td>Tel: 678-957-9614</td>
<td>China - Hangzhou</td>
<td>Korea - Daegu</td>
<td>Fax: 33-1-69-30-90-79</td>
</tr>
<tr>
<td>Fax: 678-957-1455</td>
<td>Tel: 86-571-8792-8115</td>
<td>Korea - Seoul</td>
<td>Germany - Garching</td>
</tr>
<tr>
<td>Austin, TX</td>
<td>China - Hong Kong SAR</td>
<td>Tel: 82-2-554-7200</td>
<td>Tel: 49-8931-9700</td>
</tr>
<tr>
<td>Tel: 512-257-3370</td>
<td>Tel: 852-2943-5100</td>
<td>Malaysia - Kuala Lumpur</td>
<td>Germany - Haan</td>
</tr>
<tr>
<td>Boston</td>
<td>China - Nanjing</td>
<td>Tel: 60-3-7651-7906</td>
<td>Tel: 49-2129-3766400</td>
</tr>
<tr>
<td>Westborough, MA</td>
<td>Tel: 86-25-8473-2460</td>
<td>Malaysia - Penang</td>
<td>Germany - Heilbronn</td>
</tr>
<tr>
<td>Tel: 774-760-0087</td>
<td>China - Qingdao</td>
<td>Tel: 60-4-227-8870</td>
<td>Tel: 49-7131-72400</td>
</tr>
<tr>
<td>Fax: 774-760-0088</td>
<td>China - Shanghai</td>
<td>Philippines - Manila</td>
<td>Germany - Karlsruhe</td>
</tr>
<tr>
<td>Chicago</td>
<td>Tel: 86-21-3326-8000</td>
<td>Tel: 63-2-634-9065</td>
<td>Tel: 49-721-625370</td>
</tr>
<tr>
<td>Itasca, IL</td>
<td>China - Shenyang</td>
<td>Singapore</td>
<td>Germany - Munich</td>
</tr>
<tr>
<td>Tel: 630-285-0071</td>
<td>Tel: 86-24-2384-2829</td>
<td>Tel: 65-6334-8870</td>
<td>Tel: 49-89-627-144-0</td>
</tr>
<tr>
<td>Fax: 630-285-0075</td>
<td>China - Shenzhen</td>
<td>Taiwan - Hsin Chu</td>
<td>Fax: 49-89-627-144-44</td>
</tr>
<tr>
<td>Dallas</td>
<td>Tel: 86-755-8864-2200</td>
<td>Taiwan - Kaohsiung</td>
<td>Germany - Rosenheim</td>
</tr>
<tr>
<td>Addison, TX</td>
<td>China - Suzhou</td>
<td>Tel: 886-7-213-7830</td>
<td>Tel: 49-8031-354-560</td>
</tr>
<tr>
<td>Tel: 972-818-7423</td>
<td>Tel: 86-186-6233-1526</td>
<td>Taiwan - Taipei</td>
<td>Israel - Ra'anana</td>
</tr>
<tr>
<td>Fax: 972-818-2924</td>
<td>China - Wuhan</td>
<td>Tel: 886-2-2508-8600</td>
<td>Tel: 972-9-744-7705</td>
</tr>
<tr>
<td>Detroit</td>
<td>Tel: 86-27-5980-5300</td>
<td>Thailand - Bangkok</td>
<td>Italy - Milan</td>
</tr>
<tr>
<td>Novi, MI</td>
<td>China - Xian</td>
<td>Tel: 66-2-694-1351</td>
<td>Tel: 39-0331-742611</td>
</tr>
<tr>
<td>Tel: 248-848-4000</td>
<td>Tel: 86-29-8833-7252</td>
<td>Tel: 39-049-7625286</td>
<td>Fax: 39-0331-466781</td>
</tr>
<tr>
<td>Houston, TX</td>
<td>China - Xiamen</td>
<td>Vietnam - Ho Chi Minh</td>
<td>Italy - Padova</td>
</tr>
<tr>
<td>Tel: 281-894-5983</td>
<td>Tel: 86-592-2388138</td>
<td>Tel: 84-28-5448-2100</td>
<td>Tel: 39-049-7625286</td>
</tr>
<tr>
<td>Indianapolis</td>
<td>China - Zhubai</td>
<td></td>
<td>Netherlands - Drunen</td>
</tr>
<tr>
<td>Noblesville, IN</td>
<td>Tel: 86-756-3210040</td>
<td></td>
<td>Tel: 31-416-690399</td>
</tr>
<tr>
<td>Tel: 317-773-8323</td>
<td></td>
<td></td>
<td>Fax: 31-416-690340</td>
</tr>
<tr>
<td>Fax: 317-773-5453</td>
<td></td>
<td></td>
<td>Norway - Trondheim</td>
</tr>
<tr>
<td>Tel: 317-536-2380</td>
<td></td>
<td></td>
<td>Tel: 47-72884388</td>
</tr>
<tr>
<td>Los Angeles</td>
<td></td>
<td></td>
<td>Poland - Warsaw</td>
</tr>
<tr>
<td>Mission Viejo, CA</td>
<td></td>
<td></td>
<td>Tel: 48-22-3325737</td>
</tr>
<tr>
<td>Tel: 949-462-9523</td>
<td></td>
<td></td>
<td>Romania - Bucharest</td>
</tr>
<tr>
<td>Fax: 949-462-9608</td>
<td></td>
<td></td>
<td>Tel: 40-21-407-87-50</td>
</tr>
<tr>
<td>Tel: 951-273-7800</td>
<td></td>
<td></td>
<td>Spain - Madrid</td>
</tr>
<tr>
<td>Raleigh, NC</td>
<td></td>
<td></td>
<td>Tel: 34-91-708-08-90</td>
</tr>
<tr>
<td>Tel: 919-844-7510</td>
<td></td>
<td></td>
<td>Fax: 34-91-708-08-91</td>
</tr>
<tr>
<td>New York, NY</td>
<td></td>
<td></td>
<td>Sweden - Gothenberg</td>
</tr>
<tr>
<td>Tel: 631-435-6000</td>
<td></td>
<td></td>
<td>Tel: 46-31-704-60-40</td>
</tr>
<tr>
<td>San Jose, CA</td>
<td></td>
<td></td>
<td>Sweden - Stockholm</td>
</tr>
<tr>
<td>Tel: 408-735-9110</td>
<td></td>
<td></td>
<td>Tel: 46-8-5090-4654</td>
</tr>
<tr>
<td>Tel: 408-436-4270</td>
<td></td>
<td></td>
<td>UK - Wokingham</td>
</tr>
<tr>
<td>Canada - Toronto</td>
<td></td>
<td></td>
<td>Tel: 44-118-921-5800</td>
</tr>
<tr>
<td>Tel: 905-695-1980</td>
<td></td>
<td></td>
<td>Fax: 44-118-921-5820</td>
</tr>
<tr>
<td>Fax: 905-695-2078</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>