Table of Contents

1. About This Release...3
 1.1. Release Identification...3
 1.2. Components and Documents Included in this Release...4
 1.3. Files Included in this Release...4

2. What is New?.. 7
 2.1. Features... 7
 2.2. Fixes...7
 2.3. Limitations.. 15

3. Updating the Controller Firmware... 19
 3.1. Updating the Controller Firmware.. 19

4. Installing the Drivers..20

5. Revision History.. 21

The Microchip Website...22

Product Change Notification Service..22

Customer Support.. 22

Microchip Devices Code Protection Feature..22

Legal Notice... 22

Trademarks.. 23

Quality Management System...24

Worldwide Sales and Service...25
1. **About This Release**

The development release described in this document includes firmware, OS drivers, tools, and host management software for the solutions from Microchip.

1.1 **Release Identification**

The firmware, software, and driver versions for this release are shown in the following table.

<table>
<thead>
<tr>
<th>Table 1-1. Release Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solutions Release</td>
</tr>
<tr>
<td>Package Release Date</td>
</tr>
<tr>
<td>Firmware Version</td>
</tr>
<tr>
<td>UEFI Version</td>
</tr>
<tr>
<td>Legacy BIOS</td>
</tr>
<tr>
<td>Driver Versions(^3)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Management Software</td>
</tr>
<tr>
<td>(arcconf, maxView(^TM), Event Monitor, BootUSB)</td>
</tr>
</tbody>
</table>

Notes:

1. Downgrading to 1.04 B0 or older builds from this release or prior 1.29 releases may cause the board to not boot or have supercap errors due to an incompatibility in SLEEPROMs between this release and prior releases. Refer to the section "3. Updating the Controller Firmware" to downgrade an existing board.

2. If the firmware running on the board is older than 0.01 B594, existing data in the logical drives must be backed up if it needs to be used after the upgrade. After the upgrade from firmware prior to 0.01 B594, the logical drives will need to be recreated.

3. Only run the driver on firmware 0.01 build 500 or later.

4. Only Windows 11 Inbox driver is supported.
1.2 Components and Documents Included in this Release

Download the firmware, drivers, host management software, and supporting documentation for your SmartHBA 2100/SmartRAID 3100 controller and SmartRAID 3100 and SmartRAID 3100 controller solutions from the Microchip Web site at https://start.adaptec.com

1.3 Files Included in this Release

This release consists of the files listed in the following tables:

Firmware Files

Table 1-2. Firmware Files

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
<th>Pre-Assembly Use</th>
<th>Post-Assembly Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>SmartFWx100.bin</td>
<td>Programmable NOR Flash File Use to program NOR Flash for boards that are already running firmware.</td>
<td>—</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 1-3. Firmware Programming Tools

<table>
<thead>
<tr>
<th>Tool</th>
<th>Description</th>
<th>Executable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arcconf romupdate</td>
<td>The command allows to upgrade/downgrade the firmware and BIOS image to the controller.</td>
<td>Refer to Table 1-7</td>
</tr>
<tr>
<td>maxView™ firmware upgrade wizard</td>
<td>The firmware upgrade wizard allows to upgrade/downgrade the firmware and BIOS image to one or more controller(s) of same model in the system.</td>
<td>Refer to Table 1-7</td>
</tr>
</tbody>
</table>

Driver Files

Table 1-4. Windows Storport Miniport SmartPQI Drivers

<table>
<thead>
<tr>
<th>Package</th>
<th>Drivers</th>
<th>Binary</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>Server 2022, Server 2019 and Server 2016 Windows 10</td>
<td>SmartPqi.sys</td>
<td>x64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SmartPqi.inf</td>
<td>x64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Smartpqi.cat</td>
<td>x64</td>
</tr>
</tbody>
</table>

Table 1-5. Linux SmartPQI Drivers

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Red Hat Enterprise Linux 8.4, 8.3, 8.2, 8.1, 7.9, 7.8, 7.7, 7.6</td>
<td>x64</td>
</tr>
<tr>
<td>CentOS 8.4, 8.3, 8.2, 8.1, 8.0, 7.9, 7.8, 7.7</td>
<td>x64</td>
</tr>
<tr>
<td>SuSE Linux Enterprise Server 12¹, SP5, SP4, SP3</td>
<td>x64</td>
</tr>
<tr>
<td>SuSE Linux Enterprise Server 15 SP3, SP2, SP1¹</td>
<td>x64</td>
</tr>
</tbody>
</table>
Drivers

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Linux 7.9, 7.8, UEK 6U1</td>
<td>x64</td>
</tr>
<tr>
<td>Oracle Linux 8.4 UEK6</td>
<td>x64</td>
</tr>
<tr>
<td>Oracle Linux 8.2 UEK6</td>
<td>x64</td>
</tr>
<tr>
<td>Oracle Linux 8.3, 8.2 UEK6U1</td>
<td>x64</td>
</tr>
<tr>
<td>Ubuntu 21.04</td>
<td>x64</td>
</tr>
<tr>
<td>Ubuntu 20.04.2, 20.04.1, 20.04</td>
<td>x64</td>
</tr>
<tr>
<td>Ubuntu 18.04.5, 18.04.4, 18.04</td>
<td>x64</td>
</tr>
<tr>
<td>Ubuntu 16.04.5</td>
<td>x64</td>
</tr>
<tr>
<td>Debian 10.10, 10.05</td>
<td>x64</td>
</tr>
<tr>
<td>Debian 9.13</td>
<td>x64</td>
</tr>
<tr>
<td>Citrix xenServer 8.2, 8.1, 8.0</td>
<td>x64</td>
</tr>
<tr>
<td>Fedora 34 (inbox only)</td>
<td>x64</td>
</tr>
</tbody>
</table>

Note: 1. To mitigate against the Spectre Variant 2 vulnerability, the RHEL 6u9/RHEL7u4/RHEL7u5 and SLES11 SP3 and higher drivers have been compiled to avoid the usage of indirect jumps. This method is known as "Retpoline".

FreeBSD, Solaris, and VMware SmartPQI Drivers

<table>
<thead>
<tr>
<th>Drivers</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>FreeBSD 13, 12.2, 11.4</td>
<td>x64</td>
</tr>
<tr>
<td>Solaris 11.4</td>
<td>x64</td>
</tr>
<tr>
<td>VMware 6.7 U3/U2, 6.5 U3/U2</td>
<td>x64</td>
</tr>
<tr>
<td>VMware 7.0 U3/U2/U1</td>
<td>x64</td>
</tr>
</tbody>
</table>

Host Management Software

Table 1-7. Host Management Utilities

<table>
<thead>
<tr>
<th>Description</th>
<th>OS</th>
<th>Executable</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARCCONF Command Line Utility</td>
<td>Windows x64, Linux x64,</td>
<td>See the Arcconf download package for</td>
</tr>
<tr>
<td></td>
<td>VMware 6.5 and above</td>
<td>the OS-applicable installation</td>
</tr>
<tr>
<td></td>
<td>XenServer, FreeBSD x64,</td>
<td>executable.</td>
</tr>
<tr>
<td></td>
<td>Solaris x86</td>
<td></td>
</tr>
<tr>
<td>ARCCONF for UEFI</td>
<td></td>
<td>Included as part of the firmware</td>
</tr>
<tr>
<td></td>
<td></td>
<td>downloadable image.</td>
</tr>
<tr>
<td>Description</td>
<td>OS</td>
<td>Executable</td>
</tr>
<tr>
<td>-------------</td>
<td>----</td>
<td>------------</td>
</tr>
</tbody>
</table>
| maxView™ Storage Manager | Windows x64
Linux x64
VMware ESXi 6.5 and above
XenServer | See the maxView Storage Manager download package for the OS-applicable installation executable. |
| maxView™ vSphere Plugin | VMware 6.5 and above | See the VMware maxView Storage Manager download package for the OS-applicable installation executable. |
| Boot USB (offline or pre-boot) for ARCCONF and maxView Storage Manager | Linux x64 | See the maxView BootUSB download package for the .iso file. |
2. **What is New?**

2.1 **Features**

The following table lists features supported for this release.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Supported in this Release</th>
<th>Future Release</th>
</tr>
</thead>
<tbody>
<tr>
<td>UEFI Driver, Boot Support</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Legacy Boot Support</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Dynamic Power Management</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SMR Drive Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Enumeration, Unrestricted Command Flow-Through</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>SATL Translation for HA/HM SMR Management</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Identify All Drive Types</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Driver Support</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Windows</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Linux</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>VMware</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>FreeBSD</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Solaris</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>OS certification</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Out of Band interface selection support of MCTP or PBSI</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Flash Support</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>MCTP BMC Management</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Configurable Big Block Cache Bypass</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Green Backup Support for SmartRAID</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4Kn Support in RAID</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>

2.2 **Fixes**

2.2.1 **Firmware Fixes**

2.2.1.1 **Fixes and Enhancements for Firmware Release 4.72 B0**

This release includes the following fixes and enhancements:

- Added additional debug information into controller crash dump log file.
- Added driver and firmware handshake mechanism during the crash dump generation process (start and end of crash dump generation) to avoid any planned reboot/shutdown, thus ensuring the crash dump gets generated in these scenarios.
• Added the NMI reason code into crash dump to differentiate various NMI scenarios that the driver can trigger.
• Added support to blink the Predictive Failure (PF) LED during Predictive Spare Rebuilding (PSR) for physical drives that can be safely removed and replaced without causing a logical drive failure.
• Added support to configure default setting for the drive write cache.
• Added support in PBSI to show maximum and negotiated link rate for physical drives.
• Added support to avoid truncating PBSI I2C DSAP write message early based on the stop bit.
• Added support in PBSI to extend controller serial number size to 15 bytes.

• Fixed an issue where the file system may read incorrect data from a degraded parity logical drive.
 – Root Cause: While processing a host request that spans multiple stripes in a degraded parity logical drive, firmware sets a RETRY and FATAL ERROR status flag when completing one stripe to cause the entire host request to be retried again. However, at the same time, another stripe within the same host request completes and the status flags are overwritten with a GOOD status. Due to the RETRY and FATAL ERROR status flags being overwritten, the host request is not retried and is completed with GOOD status leaving incorrect data on the drive.
 – Fix: Firmware will use an atomic update to modify the host request status flags.
 – Risk: Low

• Fixed a problem where the physical drive firmware update does not succeed when initiated through Out-Of-Band (OOB) MCTP host transport.
 – Root Cause: Firmware was not setting the correct response to host for the SCSI pass through OUT direction commands.
 – Fix: To adjust the response buffer properly for these SCSI pass through commands.
 – Risk: Medium

• Fixed a problem where the I/O latency may be more for maxCache configured SATA drive volume, if there are non-remappable UREs/bad blocks.
 – Root Cause: When maxCache read request is failing due to the bad block sense data, firmware is not logging bad blocks internally with required flags to invoke “short circuit logic” on bad blocks which sets the respective error status without having to send it to the drives. Due to this, subsequent reads to known bad blocks are sent to the drive, leading to unwanted latency in logical volume read IOs.
 – Fix: Update the logical request type to trigger execution of the short circuit bad block logic.
 – Risk: Low

• Fixed a problem where excess data is transferred for first and intermediate request packets for packetized OOB MCTP requests.
 – Root Cause: While responding to the assemble request packet, firmware is always sending a success acknowledgment packet with 308 bytes. Where 292 bytes are max_resp_length and 16 bytes are the MCTP header. For the first and intermediate acknowledgment packets the response data does not need to be provided.
 – Fix: For acknowledgment packets only send back the 16 byte header.
 – Risk: Low

• Fixed an issue where the file system or application may read incorrect data when a backup power source is discharged completely, and system power loss occurs during a transformation.
 – Root Cause: When the backup power source goes into a discharge state, there is a case where the current transformation iteration is not protected in the controller cache. If system power loss happens at the same time, the transformation iteration is not completed, and future reads could return incorrect data for that stripe.
 – Fix: When the backup power source is discharged, firmware will complete the current transformation iteration and then stop the transformation process until the backup power source is charged.
 – Risk: Low

• Fixed a controller 0x1E30 lockup problem when the drive topology is hot removed and added back into the controller in a loop.
– Root Cause: When handling the device hotplug, firmware disables the interrupts and tries to update the seven segment display by allocating a logical request. After updating it through the SES diagnostic pages, and then freeing the logical request, firmware tries to wake up tasks waiting on this logical request while the interrupts are disabled, thus resulting in the lockup.
– Fix: Added necessary code to enable and disable interrupts while freeing up the logical request.
– Risk: Medium

• Fixed an issue where URE is not captured in the "known bad blocks" list after system reboot for configured HDDs.
 – Root Cause: After a reboot, IOBypass gets enabled for cache disabled HDD logical drives. During boot time, PQI initialization triggers IOBypass to be enabled based on logical drive states and cache configured states, but does not factor in whether IOBypass is configured for the volume. Due to this reason, IOBypass is getting enabled for the logical drive when it is not configured. For IOBypass configured drives, URE logging will not happen.
 – Fix: Check that IOBypass is configured before it is allowed for any logical drive.
 – Risk: Low

• Fixed an issue where SED HBA drive security status is not updated in the PLDM layer.
 – Root Cause: When SED HBA drive’s status changes, firmware does not notify the PLDM layer.
 – Fix: Notify PLDM layer when the SED drive status changes.
 – Risk: Low

• Fixed an issue where the Fault LED is not turned ON when firmware fails a bad HBA drive connected to an expander during device discovery or hot-plug.
 – Root Cause: When firmware fails a HBA drive during device discovery or hot-plug, it does not set the "select" bit to 1 in the SES control page to turn on the Fault LED. The issue is that firmware still sees this failed HBA drive is exposed to host so firmware does not control the drive LED and the host must control the drive LED. This leads to the firmware not setting the "select" bit to 1 in the SES control page for the failed HBA drive when firmware is performing the LED update operation.
 – Fix: Firmware sets the "select" bit to 1 in SES control page for the failed HBA drive which is not exposed to host and turns ON the drive’s Fault LED correctly.
 – Risk: Low

• Fixed an issue where SATA HDD enterprise SEDs fail during SED qualification if initiated immediately after drive reset.
 – Root Cause: As part of SED qualification discovery, firmware issues StartSession by sending SECURITY PROTOCOL OUT commands. Immediately after drive reset if the SED qualification is run, StartSession fails due to protocol error and commands to the drive are aborted with sense key set to ILLEGAL REQUEST and sense code CMD_SEQ_ERROR. In this case, firmware immediately fails the drive with reason code 0x4D (SED protocol command failure) after failing to StartSession without retrying.
 – Fix: Firmware will retry the StartSession procedure after encountering this error.
 – Risk: Low

• Fixed an issue where LUN Reset from host to the same drive continuously occurs every 60 seconds after injecting crash on expander SEP while running IOmeter test with four single-drive RAID-0 logical drives with the IOBypass enabled.
 – Root Cause: For logical drives in a dual domain configuration that have IOBypass enabled, firmware did not process the LUN Reset request using the device handle for the active path to the drive. This resulted in IOs not being returned by firmware to the host causing the host to send continuous LUN Resets for the outstanding IOs.
 – Fix: Firmware correctly processes the LUN Reset by using the device handle for the active path so that all outstanding IOs are returned to the host.
 – Risk: Low

• Fixed SGPIO backplane configuration issue.
• Fixed an issue where firmware marking a URE on a LBA may return the status to indicate that the URE is marked on the LBA without verifying the presence of URE.
 – Root Cause: When verifying the presence of URE in that LBA with a READ command, firmware does not check the Sense Key for medium error. Any error returned was considered as a medium error.
 – Fix: Added check for Sense Key MEDIUM_ERROR (0x03) or ABORTED_COMMAND (0x0B) with Sense Code UNRECOVERED READ ERROR (0x11) from the Read command to verify the URE fails.
 – Risk: Low

• Fixed an issue of auto-rebuild not starting if two drives fail at the same time on a RAID10 or RAID6 logical drive having only one “Auto-Replace Drives” spare drive.
 – Root Cause: When activating a roaming spare for rebuild, firmware overrides the spare selection if only one spare is available for the case where two members of a logical drive fail. This results in rebuild not starting because the firmware assumes no spare is available for rebuild.
 – Fix: Fixed by not overriding the selected spare for rebuild.
 – Risk: Low

• Added support to return NCQ Priority Information. for SATA drive information to host.

• Fixed an issue where the FAULT LED is turned ON for a few seconds when multiple configured drives are hot removed from a SES enclosure and then hot added.
 – Root Cause: When multiple configured drives hot removed and then hotplugged, firmware handles the first hot plugged drive, updates the drive installed state to true for all the drives prematurely. This results in firmware setting FAULT LED FAILED state briefly for the hotplugged drives which are not quite present and still need further processing. After a few seconds, the FAULT LED FAILED state is cleared for these drives.
 – Fix: While handling each hot inserted drive, firmware will update the drive and enclosure information for only the hot-added drive being handled at the moment.
 – Risk: Low

• Fixed an issue where the enclosure fails to receive SES control from the controller when drives are partially populated.
 – Root Cause: Zero-based and one-based numbering detection algorithm fails because the unpopulated bays are skipped during the scan.
 – Fix: Scan all bays, do not skip.
 – Risk: Low

• Fixed an issue where the controller sends SES control commands to wrong bay number after enclosure power cycle.
 – Root Cause: The SES indexes are off by one index when a zero-based format enclosure is detected.
 – Fix: Do not adjust slot numbers with +1, when setting the expander attached drive identification.
 – Risk: Low

• Fixed an issue where diskname is not showing for drives after deletion of logical drive and RAID metadata present on the SEDs.
 – Root Cause: Firmware is unable to read the RAID metadata on boot if SED is locked.
 – Fix: Firmware will no longer look for locked to unlocked state transition. It will check if current status is unlocked, then it will read the RAID metadata and update drive flags allowing RAID metadata to be cleared.
 – Risk: Low

• Fixed an issue where the sanitize support flag of an OPAL SED is set to not support if Update Security State (0x1F) command is received right after this OPAL SED reverted to factory default or Original Factory State (OFS) and before the firmware can update the status change for this OPAL SED.
– Root Cause: The logic in Update Security State command updates the state (for example, lock, unlocked, locking enabled, etc.) of a SED but it does not update the sanitize support flag for a SED. The firmware does update both SED's state and sanitize support flag. For OPAL SED, the firmware relies on the state of OPAL SED to carry out the update of the SED's sanitize support flag. If the state of a OPAL SED is not in the "locking enabled" state, the sanitize support flag is not updated. In this case, the Update Security State command is executed before the firmware so the OPAL SED state is updated. It will not be in "locking enabled" state after it is reverted to OFS. As a result, the sanitize support flag is not updated when firmware runs the check/update.

– Fix: In the function that processes Update Security State command, check if an OPAL SED is in the "locking enabled" state then skip updating the status of this OPAL SED. The OPAL SED status will be updated by firmware so the sanitize support modes also get updated accordingly.

– Risk: Low

• Fixed an issue where the firmware reports to host as OFA supported and capable for all non-OFA binaries.

– Root Cause: While updating OFA feature flags, firmware is not checking OFA header for OFA feature enabled flag before updating the feature bits.

– Fix: OFA capable and OFA supported feature bits should be set to true only if OFA header feature enabled flag is set to “true” indicating the OFA feature is enabled in the firmware image.

– Risk: Low

• Fixed an issue where spare activation is not occurring during SED Qualification event generation for replacement drives.

– Root Cause:
 • Issue 1: During load configuration, if SED support is enabled, spare activation is not done for the units which do not contain any replacement drives.
 • Issue 2: SED Qualification events are generated for replacement drives which are non-SED in a logical drive during load configuration.

– Fix:
 • For logical drives that do not have newly added replacement drives, during SED Qualification event a spare activation should occur while loading the configuration and not skipped.
 • SED Qualification event for replacement drive should be generated only if newly added drive in a logical drive is a SED.

– Risk: Low

• Fixed an issue where rebuild did not start after multiple iterations of drive failures.

– Root Cause: Spare Activation state was set, but firmware was not acting upon it. First drive failure triggered spare activation as it should, but second drive removal event set state to spare activation needed. Firmware was still processing the first drive failure and treated the second drive failure as a duplicate of the first drive failure so did not process the second rebuild.

– Fix: Firmware will remove the current task from its list when the task is started so that subsequent tasks will not be considered as duplicates.

– Risk: Medium

• Fixed an issue where a replacement cable attached after an external cable was discovered with error is not discovered correctly.

– Root Cause: The error status of the prior cable was not being cleared prior to the new cable being discovered. This resulted in a persistent "failed" state for the new cable.

– Fix: Ensure prior cable information is cleared before processing the hot-add discovery for a new cable in that location.

– Risk: Low

• Fixed an issue where the controller might fail to discover devices after a cable is hot-added.

– Root Cause: The SFF-8449 specification lists a minimum setup time for the cable of 2 seconds before interrogating the cable about its interface type and setup details. The controller firmware was not providing this setup time and in some cases cables would not be ready for access and fail to be discovered.
– Fix: Adjusted the cable insertion handler to provide the appropriate delay for standards compliance.
– Risk: Low

• Fixed a potential problem of inability to delete a MaxCache write-back logical drive.
– Root Cause: Errors in host write commands could put MaxCache metadata in a state where outstanding I/O count for a cache line would not go back to zero, so if write policy was changed from write-back to write-thru, the flush would never complete. Since the flush never completes, the logical drive could not successfully move to write-thru, and the MaxCache logical drive could not be deleted.
– Fix: Adjusted the error handling in host writes to properly update MaxCache metadata on retries.
– Risk: Medium

2.2.2 UEFI Fixes

Note: Microsoft signed and secure boot is supported.

2.2.2.1 Fixes and Enhancements for UEFI Driver 1.3.15.2/Legacy BIOS 1.3.15.2

This release includes the following legacy BIOS fixes and enhancements:

• Fixed an issue where the last logical drive in an array cannot be deleted.
 – Root Cause: Cached value of logical drive was used to check the status before deleting the logical drive.
 – Fix: Update the value of the logical drive ID after every logical drive delete operation.
 – Risk: Low

• Fixed an issue where build method is not listed for RAID 6 array creation.
 – Root Cause: Incorrect string length check for comparing the selected RAID level caused the Build method to be returned as unsupported.
 – Fix: Use the correct string length for comparing the selected RAID level.
 – Risk: Low

• Fixed an issue where junk characters are displayed in the BMC settings page.
 – Root Cause: The background initialization code for the menu was missing.
 – Fix: Added required background initialization code.
 – Risk: Low

• Fixed an issue where bootup freezes with Insyde Legacy BIOS on AMD ROME platform.
 – Root Cause: The Legacy Option ROM was not checking if the Keyboard buffer was empty before reading and writing to ports 60h and 64h.
 – Fix: Check if the Keyboard buffer is clear before reading and writing to ports 60h and 64h. If not, clear the buffer by reading the data from Port 60h.
 – Risk: Medium

This release includes the following UEFI fixes and enhancements:

• Updated driver name from MSCC/Microsemi to Microchip Technology Inc.

• Added new option under controller settings “Unchanged” for Configured Physical Drive Write Cache state. This setting ensures Physical Drive Write Cache state will not change for configured drives.

• Fixed an issue where migrate logical drive displays error message for RAID 1 (Triple) when trying to migrate stripe size for the logical drive.
 – Root Cause: Current status for RAID50, RAID60, RAID1(TRIPLE), and RAID10(TRIPLE) was not considered while populating possible RAID options.
 – Fix: Validate and update possible RAID options considering current status for RAID50, RAID60, RAID1(TRIPLE), and RAID10(TRIPLE).
 – Risk: Low

• Fixed an issue where HII and health messages display incorrect translation for Chinese and Japanese strings.
 – Root Cause: Incorrect translation for few HII options and driver health messages.
 – Fix: Corrected language translations for Unicode strings.
 – Risk: Low

• Fixed an issue where UEFI arcconf CLI freezes when save support archive operation is performed.
– Root Cause: Memory is corrupted when user does not enter any file system and performs save support archive operation. The current directory remains NULL.
– Fix: Do not access current file system and provide error message when user has not selected a valid file system.
– Risk: Low

• Fixed an issue where the Version field of Firmware Management Protocol is not populated with 32 bit version.
 – Root Cause: The Version field of Firmware Management Protocol is not populated with 32 bit version instead it is assigned with a truncated long version.
 – Fix: The Version field of Firmware Management Protocol is assigned with 32 bit version format.
 – Risk: Low

2.2.3 Driver Fixes

2.2.3.1 Fixes and Enhancements for Linux Driver Build 2.1.14-035
This release includes the following fixes and enhancements.

• Fixed an issue of driver spin down when system transitions to the Suspend (S3) state in certain systems.
 – Root Cause: In certain system (based on PCI IDs), when the OS transitions the system into the Suspend (S3) state, the flush cache command indicates a system RESTART instead of SUSPEND. This avoids drive spin-down.
 – Fix: Avoid drive spin-down when system transitions to the Suspend state.
 – Risk: Medium

• Added enable SATA NCQ priority support to sysfs. The driver needed device attribute sas_ncq_prio_enable for I/O utility to enable SATA NCQ priority support and to recognize I/O priority in SCSI command and pass priority information to controller firmware. This device attribute works only when device has NCQ priority support and the controller firmware can handle I/O with NCQ priority attribute.
• Fixed an issue where logical drive size is not reflecting after expansion. After modifying the logical drive size, lsblk command still shows previous size of the logical volume.
 – Root Cause: When the driver gets any event from firmware, the driver schedules a rescan worker with a delay of 10 seconds. If the array expansion completes too quickly (in a second), the driver does not catch the logical drive expansion due to worker delay. Since the driver doesn’t detect logical drive expansion, it does not call rescan device to update the new size of the logical drive to the OS. This causes lsblk to report the original size.
 – Fix: For every logical device event notification, driver rescans the logical drive.
 – Risk: Low

• Fixed an issue where during kdump OS is dropping into a shell if the controller is in Locked-up state.
 – Root Cause: Driver issues SIS soft reset to restore the controller to SIS mode when OS boots into kdump mode. If the controller is in Locked-up state, the SIS soft reset does not work. Since the controller lockup code has not been cleared, the driver considers firmware is no longer up and running. In this case, the driver returns an error code to OS and kdump fails. After kdump failure, some OS distributions do not reboot cleanly which leads to the OS dropping into a recovery shell.
 – Fix: During kdump, driver will reboot the system if the controller is in Locked-up state.
 – Risk: Low

• Fixed an issue where the logical drive creation takes longer time to expose logical drive.
 – Root Cause: HZ is defined as the number of times jiffies is to be incremented per second. If HZ=100, then it would take 0.01s to increment a jiffy by one. If HZ=1000, then it would take 0.001 s (1ms) to increment a jiffy by one. Delay of n seconds can be achieved by simply multiplying n with HZ.
 – PQI_HZ macro is set to 1000 when HZ value is less than 1000. By default, PQI_HZ will result into a delay of 10 s (for kernel, which has HZ=100). In this case, when firmware raises an event, rescan worker will be scheduled after a delay of (10 x PQI_HZ) = 100 s instead of 10 s.
 – Additionally, driver uses PQI_HZ at many instances, which might result in some other issues with respect to delay.
 – Fix: Use macro HZ for delay calculation and remove PQI_HZ.
- Risk: Low
- Fixed an issue where when one of the path fails during I/O and IOBypass path gets disabled for a multipath device, the I/O is again retried in the RAID path. These requests were submitted to non-existent devices in the RAID path and firmware responded to those requests with Illegal request and 'Invalid field in parameter list' sense data.
 - Root Cause: Even when the device path has gone, the driver continued submitting requests in RAID path and they are returned from firmware as illegal requests.
 - Fix: When one of the paths is removed in dual domain, return DID_NO_CONNECT to SCSI mid-layer of the OS. The DID_NO_CONNECT return helps multipath to stop issuing Test Unit Ready and other media access commands before failing the path. Failing the path quickly helps routing I/O to the opposite path faster.
 - Risk: Low
- Fixed an issue where the controller spins down drives during a warm boot on Linux.
 - Root Cause: The Linux SmartPQI driver has a callback function that the OS calls when the system is being shut down or being rebooted. This callback function calls the Flush Cache command. The command has a parameter that allows the driver to indicate to the firmware the reason for the flush cache (shutdown, hibernate, suspend, or restart). The OS callback function does not indicate to the driver whether it is being called for shutdown or warm boot, so the driver indicates to the firmware that the reason for the flush cache is a system shutdown. The firmware always spins down drives in this case.
 - Fix: The SmartPQI driver uses a Linux kernel global variable to distinguish between a system shutdown and a warm boot and sets the Flush Cache command parameter accordingly.
 - Risk: Low
- Fixed an issue where duplicate device nodes for Ultrium tape drive and medium changer are being created.
 - Root Cause: The Ultrium tape drive is a multi-LUN SCSI target. It presents a LUN for the tape drive and a second LUN for the medium changer. The controller firmware lists both LUNs in the report logical LUNS results, so the SmartPQI driver exposes both devices to the OS. Then the OS does its normal device discovery through the SCSI REPORT LUNS command, which causes it to re-discover both devices a second time, resulting in duplicate device nodes.
 - Fix: When the OS re-discovers the two LUNs for the tape drive and medium changer, the driver recognizes that they have already been reported and blocks the OS from adding them a second time.
 - Risk: Low

2.2.3.2 Fixes and Enhancements for FreeBSD Driver Build 4170.0.1014
This release includes the following enhancements and fixes:
- Fixed an issue where debug log messages were flooding the kernel logs.
 - Root cause: There are a lot of DBG_INFO prints which are logged by SmartPQI and one DBG_ERR print causing log contention which should not be considered an error.
 - Fix: Disable the DBG_INFO prints from logging and change DBG_ERR to DBG_INFO for a message not considered an error.
 - Risk: Low

2.2.3.3 Fixes and Enhancements for Solaris Driver Build 4120.0.1005
There are no known fixes for this release.

2.2.3.4 Fixes and Enhancements for Windows Build 1010.12.0.1007
There are no known fixes for this release.

2.2.3.5 Fixes and Enhancements for VMware Driver Build 4230.0.103
This release includes the following enhancements and fixes:
- Fixed an issue where possibility of a null device pointer needs to be prevented in one of the functions where it waits for the outstanding commands to get completed.
 - Root Cause: Device may have been removed.
 - Fix: Check for a null device pointer before starting the wait loop.
2.2.4 Management Software Fixes

2.2.4.1 Fixes and Enhancements for Arcconf/maxView Build B24700

This release includes the following fixes and enhancements for arcconf/maxView:

- Added support of Redfish Server Daemon in ESXi 7.x.
- Added support for configuration “unchanged” option for “drive write cache policy” at the controller level.
- Rebranded maxView applications from Microsemi to Microchip.
- Fixed an issue where maxView does not work after upgrading build 23821 to 24308.
 - Root Cause: maxView installer does not clear the older files while upgrading, making maxView unusable.
 - Fix: Added changes to older files from installed directory while upgrading maxView.
 - Risk: Low
- Fixed an issue where arconf displays missing drive segment information differently for RAID levels 10/50/60.
 - Root Cause: arconf displays missing drive as “Failed” instead of “Missing” for specific RAID levels.
 - Fix: Added changes to display missing drive as “Missing” consistent in all RAID levels in the segment information.
 - Risk: Low
- Fixed an issue where secure erase Task progress goes from 98% to 0% in arconf.
 - Root Cause: arconf was displaying a secure erase task that is completed as still in progress with 0%.
 - Fix: Added changes to not display a secure erase task when task is completed.
 - Risk: Low
- Fixed an issue where ROMUPDATE command fails to open image in UEFI arconf.
 - Root Cause: arconf was doing a redundant image file verification which resulted in failure.
 - Fix: Added changes for proper image file verification in ROMUPDATE command.
 - Risk: Low
- Fixed an issue where maxView displays a warning message after selecting a firmware image file for flashing.
 - Root Cause: Warning message of invalid message is displayed on the window of maxView after selecting the firmware image.
 - Fix: Added changes to move the warning message before uploading the firmware image in maxView.
 - Risk: Low

2.3 Limitations

2.3.1 Firmware Limitations

2.3.1.1 Limitations for Firmware Release 4.72 B0

This release includes the following firmware limitations:
Logical drives created with SED drives will result in the controller losing one logical request object for each physical SED drive in the array. The controller supports 1000 logical requests, and these can become depleted if logical drives are created and deleted continuously.

- Workaround: After the logical drives are created, reboot the system to recover the lost logical requests.

When a SED is added to an array as part of an array expansion or spare assignment process, the newly added SED goes through the SED qualification process. After the SED qualification is complete, the array will resume the expansion/spare assignment process. In cases where there is also heavy host I/O load during this SED qualification stage, while resuming array expansion or spare assignment, there is a possibility that the controller may end up in a hung condition and can become unresponsive to the host.

- Workaround: Reboot the system and it will clear up the hung condition, and the expansion/spare assignment process will continue.

A firmware update causes the UART log buffer (Serial Output Buffer) to be reinitialized, since the DDR gets reinitialized.

- Workaround: None

SATA drives attached to a non-Microchip expander may get into a failed state when upgrading the controller firmware from previous releases to this release due to the expander not clearing STP affiliation.

- Workaround: Power cycle the expanders to clear the STP affiliation.

A rare corner-case scenario where controller may hang during expander firmware update on multi-level expander/SEP device topology along with I/Os.

- Workaround: After the enclosure firmware update, avoid enclosure Reset. It is recommended to download the new firmware and perform manual power cycle. This issue is intermittent and can cause a hang, a reboot is known to fix such instances.

Note: This issue was mostly seen when using Linux OS.

2.3.1.2 Limitations for Firmware Release 1.32 Build 0

- Firmware release 1.32b0 may become unresponsive while attempting to flash firmware or execute other RAID logical volume operations.

 - Description: Refer to entry "Fixed an issue where firmware may become unresponsive while attempting to flash firmware or execute other RAID logical volume operations" in the Firmware fixes section.

 - A fix for this issue is available in the 1.60 B0 firmware release. If a firmware flash failure is occurring, try the following workarounds:
 - Workaround: If there are no target devices (expanders or drives) attached to the controller, attach a target device to the controller and try the host management operation again.
 - Workaround: If the system is operating using UEFI, the HII tool can be used to flash the firmware to this release as outlined in the Microchip SmartIOC 2100/SmartROC 3100 Installation and User’s Guide (ESC-2170577), appendix entry "Updating the SmartIOC 2100/SmartROC 3100 Controller Firmware".
 - Workaround: If there are target devices attached to the controller and this issue occurs or none of the workarounds can be used, contact Microchip Support.

2.3.2 UEFI Limitations

2.3.2.1 Limitations for UEFI Build 1.3.15.2/Legacy BIOS Build 1.3.15.2

There are no known limitations for this release.

2.3.3 Driver Limitations

2.3.3.1 Limitations for Linux Driver Build 2.1.14-035

This release has the following Linux limitations:

- When doing a driver injection (DUD) install. On some distributions (RHEL7.9, RHEL8.2, RHEL8.3, SLES15SP2, and SLES15SP3), the DUD install hangs if a drive in HBA mode has the Drive Write Cache enabled.

 - Workaround: There are two workarounds for this issue:
 - Ensure the Drive Write Cache is disabled for any drive in HBA mode.
• For RHEL7.9, RHEL8.2, and RHEL8.3, add `rd.driver.blacklist=smartpqi` to the grub entry along with `inst.dd`.

• Due to a change in the SCSI mid-layer, some Linux distributions may take a long time to come up if the system is rebooted while a hard disk(s) is being sanitized. This has currently been observed with inbox smartPQI drivers on RHEL 7.9, RHEL8.3, and SLES 15SP2.
 – Workaround: Do not reboot the system while a hard disk(s) is being sanitized or update to the SmartPQI 2.1.12-055 or later driver release.

• On AMD/RHEL 7.9 systems, the system might panic due to an issue in the IOMMU module. For more information, see `lore.kernel.org/linux-iommu/20191018093830.GA26328@suse.de/t/`
 – Workaround: Disable the IOMMU setting option in BIOS.

• On AMD/UEK6 systems, the system might hang during kdump if IOMMU is enabled.
 – Workaround: Disable IOMMU setting option in BIOS.

• The `smartpqi.expose_ld_first` parameter does not work correctly consistently.
 – Workaround: None

• Hibernating Linux system using `pm-hibernate` command causes system to hang.
 – Workaround: None

• When multiple controllers are in a system, udev(systemd) can timeout during kdump/kexec resulting in an incomplete kdump operation. The usual indication of the timeout is the console log entry: "scsi_hostX: error handler thread failed to spawn, error = -4".
 – Workaround: Extend the udev(systemd) timeout during a kdump operation. Use the following to increase the timeout for udev(systemd):

```bash
vi /etc/sysconfig/kdump
add udev.event-timeout=300 to KDUMP_COMMANDLINE_APPEND
systemctl restart kdump
systemctl status kdump
```

2.3.3.2 Limitations for Windows Driver Build 1010.12.0.1007

This release includes the following limitations:

• The Windows driver issues an internal flush cache command for flushing the controller cache to the drives before changing the power state of the system (during shutdown/reboot/hibernate). Due to many factors, such as speed of drives, size of cache, type of data in cache, etc. the time taken by the controller to flush the cached data can exceed the operating system specified timeout values. A system crash can be expected in those scenarios.
 – Workaround: It is advised not to do heavy write operations on logical drives composed of slow drives while initiating a system shutdown in Windows 10 environments.

2.3.3.3 Limitations for FreeBSD Driver Build 4170.0.1014

This release includes the following FreeBSD driver limitations:

• Under heavy I/O with transfer size more than 128k, controller may go offline. This happens in FreeBSD 13.
 – Workaround: Reduce the I/O transfer size of the application to less than 128k.

2.3.3.4 Limitations for Solaris Driver Build 4120.0.1005

There are no known limitations for this release.

2.3.3.5 Limitations for VMware Driver Build 4230.0.103

There are no known limitations for this release.

2.3.4 Management Software Limitations

2.3.4.1 Limitations for Arcconf/maxView Build B24700

This release includes the following Arcconf/maxView limitations:

• Advanced statistics will not be available in maxView/arconf.
• ADU report in support archive will not be available in zip format. The relevant logs are captured under `Controller_X_Debug_Log.txt`.
• SSD report in support archive will not be available.
• OS partition information is not available in FreeBSD and Solaris OS in maxView/arconf.
• Remote arconf (CIM client) is not supported for ESXi 7.x and onwards.
• In Linux OS, the Redfish server may get terminated when delete array operation is performed on an array with 64 logical devices.
 - Workaround: The user needs to restart the Redfish server or use Arconf CLI for configuration.
• Due to data type mismatch between maxView and redfish server, eccRecoveredReadErrors and serviceHours properties in the drive error counter tab will not be reflecting the current value.
 - Workaround: User needs to use arconf CLI GETCONFIG command to refer the current value for these error counter properties.
• In ESXi 7.x, maxView GUI may not update the latest configuration automatically when the operations are performed through the ESXi host arconf.
 - Workaround: User needs to refresh the configuration using the refresh link provided in the top right corner in the maxView GUI before performing any operations.
• When user tries to access the maxView main.xhtml page directly when the previous session was still active, user may end up with a warning page mentioning “XML Parsing Error: no root element found”.
 - Workaround: User needs to use the login page to get authenticated and create a new session to access the main.xhtml page.
• When the SED drive is in Locked state, the hard drive level refresh SED security status operation is not available in the maxView GUI.
 - Workaround: Use the controller level refresh SED security status operation or use arconf command to refresh the SED security status.

2.3.5 Hardware Limitations
This release includes the following hardware limitations:

• Two Wire Interface (TWI) address conflicts can cause system DDR memory to not be discovered.
 - Description: The SmartRAID 3100 and SmartHBA 2100 boards include two TWI targets on the host-facing SMBUS interface with the following slave addresses:
 • 0xA0 – Field Replaceable Unit (FRU) SEEPROM
 • 0xDE – PBSI (default)

According to the JEDEC specification, the default TWI addresses for the DDR SPD is 0x0A0-0x0AE (the spec uses 7 bit addressing which is 0x50-0x57). On platform system board designs with SMBUS wiring that has both PCIe slots and DDR slots shared on the same TWI bus, the TWI devices for the DDR and Smart controller are exposed to address conflicts which can result in the system memory not being discovered. The Smart controller PBSI interface defaults to a value of 0xDE (0x6F in 7-bit addressing) and is not a problem unless it is changed to an address that conflicts with the JEDEC defined values. The Smart controller FRU SEEPROM is hardwired to 0xA0.
 - Workaround: None available. If this issue is encountered, contact your Microchip support engineer to determine the next steps for your system.
 - Performance with workaround: Not applicable
 - Performance without workaround: Not applicable
3. **Updating the Controller Firmware**

This section describes how to update the board’s firmware components to the latest release.

3.1 **Updating the Controller Firmware**

This procedure describes how to prepare your board to be programmed with the latest firmware.

Notes:
1. If the running firmware is older than 1.98 and a transformation is in progress, complete the transformation before proceeding with the following steps to upgrade the firmware.
2. Complete these procedures exactly as described for proper functionality. If you do not follow all of the steps correctly, you could encounter unusual runtime behavior.

Flashing the board to the latest firmware:

This section describes how to update all the firmware components on Adaptec controller boards to the latest release.

If the controller is currently running **1.60 b0 firmware or newer**, follow these steps:

1. **Mandatory:** Flash the target with the provided "SmartFWx100.bin" image with arcconf/maxView software.
2. **Mandatory:** Use the OS shutdown/restart operation to gracefully reboot the system to complete the firmware update process.

Note:
After completing the firmware update, if the firmware version is still showing the prior version, retry the firmware update steps.

If the controller is currently running **1.32 b0 firmware**, follow these steps:

1. **Mandatory:** Flash the target with the provided "SmartFWx100.bin" image with arcconf/maxView software.
 - If the arcconf/maxView software becomes unresponsive or hangs then power cycle the system to recover and refer to firmware limitation section 2.3.1.2. Limitations for Firmware Release 1.32 Build 0.
2. **Mandatory:** If flashing completes, use the OS shutdown/restart operation to gracefully reboot the system to complete the firmware update process.

Note:
After completing the firmware update, if the firmware version is still showing the prior version, retry the firmware update steps.

If the controller is currently running **1.04 b0 firmware**, follow these steps:

1. **Mandatory:** Flash the controller with the provided "SmartFWx100_v1.29_b314.bin" image with arcconf/maxView software.
2. **Mandatory:** Reboot the system to refresh all components.
3. **Mandatory:** Flash the target with the provided "SmartFWx100.bin" image with arcconf/maxView software.
4. **Mandatory:** Use the OS shutdown/restart operation to gracefully reboot the system to complete the firmware update process.

At this point, the controller would be updated and would be ready to use. Install the SmartPQI driver and the latest version of the Arcconf/maxView management utility to monitor and configure the controller.

Note: Downgrading firmware could lead to unexpected behavior due to an incompatibility in SEEPROMs between this release and the prior release.
4. **Installing the Drivers**

See the “Microchip Adaptec® SmartRAID 3100 Series and SmartHBA 2100 Series Host Bus Adapters Installation and User's Guide (DS0004258A, previously ESC-2171547)” for complete driver installation instructions.
5. **Revision History**

The revision history describes the changes that were implemented in the document. The changes are listed by revision, starting with the most current publication.

<table>
<thead>
<tr>
<th>Revision</th>
<th>Date</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>11/2021</td>
<td>SR 2.6.4 Production Release with firmware version 4.72 B0 (Previously ESC-2161026)</td>
</tr>
<tr>
<td>29</td>
<td>04/2021</td>
<td>SR 2.6.2 with firmware version 4.11 B0</td>
</tr>
<tr>
<td>28</td>
<td>04/2021</td>
<td>SR 2.6.1.1 with VMware driver version 4054.2.118.</td>
</tr>
<tr>
<td>27</td>
<td>03/2021</td>
<td>SR 2.6.1 with VMware driver version 4054.1.103.</td>
</tr>
<tr>
<td>26</td>
<td>02/2021</td>
<td>SR 2.6 Production Release</td>
</tr>
<tr>
<td>25</td>
<td>10/2020</td>
<td>SR 2.5.4 Production Release</td>
</tr>
<tr>
<td>24</td>
<td>08/2020</td>
<td>SR 2.5.2.2 Production Release with Firmware 3.00</td>
</tr>
<tr>
<td>23</td>
<td>03/2020</td>
<td>SR 2.5.2 Production Release with Firmware 2.93</td>
</tr>
<tr>
<td>22</td>
<td>03/2020</td>
<td>SR 2.5 Production Release with Firmware 2.66</td>
</tr>
<tr>
<td>21</td>
<td>02/2020</td>
<td>SR 2.5.2 Production Release</td>
</tr>
<tr>
<td>20</td>
<td>10/2019</td>
<td>SR 2.5 Production Release</td>
</tr>
<tr>
<td>19</td>
<td>09/2019</td>
<td>Updated for SR 2.4.8.1 (fw v2.31 Build 0)</td>
</tr>
<tr>
<td>18</td>
<td>08/2019</td>
<td>Updated for SR 2.4.8</td>
</tr>
<tr>
<td>17</td>
<td>01/2019</td>
<td>SR2.4 Production Release</td>
</tr>
<tr>
<td>16</td>
<td>06/2018</td>
<td>SR2.3 Production Release</td>
</tr>
<tr>
<td>15</td>
<td>06/2018</td>
<td>Updated for RC Release</td>
</tr>
<tr>
<td>14</td>
<td>10/2017</td>
<td>Update supported OSs</td>
</tr>
<tr>
<td>13</td>
<td>10/2017</td>
<td>First Production Release</td>
</tr>
<tr>
<td>1-12</td>
<td>06/2016 to 07/2017</td>
<td>Pre-Production Release.</td>
</tr>
</tbody>
</table>
The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip’s product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is “unbreakable”. Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.
THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE. HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBloxx, KeeLoq, Kleer, LANCheck, LinkMD, maxStylus, maxTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, Symmcom, and Trusted Time are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2021, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-5224-9268-9
<table>
<thead>
<tr>
<th>AMERICAS</th>
<th>ASIA/PACIFIC</th>
<th>ASIA/PACIFIC</th>
<th>EUROPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corporate Office</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2355 West Chandler Blvd.</td>
<td>Tel: 61-2-9868-6733</td>
<td>Tel: 90-80-3090-4444</td>
<td>Austria - Wels</td>
</tr>
<tr>
<td>Chandler, AZ 85224-6199</td>
<td>China - Chongqing 86-23-8980-9588</td>
<td>Tel: 91-11-4160-8631</td>
<td>Tel: 43-7242-2244-39</td>
</tr>
<tr>
<td>Tel: 480-792-7200</td>
<td>China - Dongguan 86-769-8702-9880</td>
<td>Tel: 91-20-4121-0141</td>
<td>Fax: 43-7242-2244-393</td>
</tr>
<tr>
<td>Fax: 480-792-7277</td>
<td>China - Huangzhou 86-20-8755-8029</td>
<td>Japan - Osaka 81-6-6152-7160</td>
<td>Denmark - Copenhagen</td>
</tr>
<tr>
<td>Technical Support:</td>
<td>China - Hangzhou 86-571-8792-8115</td>
<td>Japan - Tokyo 81-3-6880-3770</td>
<td>Tel: 45-4485-5910</td>
</tr>
<tr>
<td>www.microchip.com/support</td>
<td>China - Hong Kong SAR 852-2943-5100</td>
<td>Korea - Daegu 82-53-744-4301</td>
<td>Fax: 45-4485-2829</td>
</tr>
<tr>
<td>Web Address:</td>
<td>China - Nanjing 86-25-8473-2460</td>
<td>Korea - Seoul 82-2-554-7200</td>
<td>Finland - Espoo</td>
</tr>
<tr>
<td>www.microchip.com</td>
<td>China - Qingdao 86-532-8502-7355</td>
<td>Malaysia - Kuala Lumpur 60-3-7651-7906</td>
<td>Tel: 358-9-4520-820</td>
</tr>
<tr>
<td></td>
<td>China - Shanghai 86-21-3326-8000</td>
<td>Malaysia - Penang 60-4-227-8870</td>
<td>France - Paris</td>
</tr>
<tr>
<td></td>
<td>China - Suzhou 86-186-6233-1526</td>
<td>Taiwan - Hsin Chu 886-3-577-8366</td>
<td>Germany - Garching</td>
</tr>
<tr>
<td></td>
<td>China - Wuhan 86-27-5980-5300</td>
<td>Taiwan - Kaohsiung 886-7-213-7830</td>
<td>Tel: 49-8931-9700</td>
</tr>
<tr>
<td></td>
<td>China - Xian 86-29-8833-7252</td>
<td>Taiwan - Taipei 886-2-2508-8600</td>
<td>Germany - Haan</td>
</tr>
<tr>
<td></td>
<td>China - Xiamen 86-592-2388138</td>
<td>Thailand - Bangkok 66-2-694-1351</td>
<td>Tel: 49-2129-3766400</td>
</tr>
<tr>
<td></td>
<td>China - Zhuhai 86-756-3210040</td>
<td>Vietnam - Ho Chi Minh 84-28-5448-2100</td>
<td>Germany - Heilbronn</td>
</tr>
</tbody>
</table>

© 2021 Microchip Technology Inc. and its subsidiaries