maxView Storage
Manager User's Guide for
PMC Adaptec
Smart-Family Controllers

PMC-2153109
Released
Issue 1: December 2015
Copyright © 2015 PMC-Sierra, Inc. All rights reserved.

The information in this document is proprietary and confidential to PMC-Sierra, Inc. In any event, no part of this document may be reproduced or redistributed in any form without the express written consent of PMC-Sierra, Inc.

PMC-2153109, Issue 1

None of the information contained in this document constitutes an express or implied warranty by PMC-Sierra, Inc. as to the sufficiency, fitness or suitability for a particular purpose of any such information or the fitness, or suitability for a particular purpose, merchantability, performance, compatibility with other parts or systems, of any of the products of PMC-Sierra, Inc., or any portion thereof, referred to in this document. PMC-Sierra, Inc. expressly disclaims all representations and warranties of any kind regarding the contents or use of the information, including, but not limited to, express and implied warranties of accuracy, completeness, merchantability, fitness for a particular use, or non-infringement.

In no event will PMC-Sierra, Inc. be liable for any direct, indirect, special, incidental or consequential damages, including, but not limited to, lost profits, lost business or lost data resulting from any use of or reliance upon the information, whether or not PMC-Sierra, Inc. has been advised of the possibility of such damage.

For a complete list of PMC-Sierra's trademarks and registered trademarks, visit: http://www.pmc-sierra.com/legal/.

Other product and company names mentioned herein may be the trademarks of their respective owners.
Revision History

<table>
<thead>
<tr>
<th>Issue</th>
<th>Issue Date</th>
<th>Details of Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>December 2015</td>
<td>Production release. Adaptec maxView Storage Manager Version 2.00.</td>
</tr>
</tbody>
</table>
Contents

1 About this Guide...12
 What You Need to Know Before You Begin..12
 Terminology Used in this Guide..12
 How to Find More Information..13

2 Introduction to maxView Storage Manager..14
 Getting Started..14
 About maxView Storage Manager ..14
 About the maxView Storage Manager Agent...15
 About the maxView Storage Manager Web Server...15
 About the maxView Storage Manager CIM Server...15
 System Requirements..16
 Browser Support..16
 Typical Storage Space Configurations..17
 A Simple Storage Space..17
 An Advanced Storage Space..17
 Continuing to Grow Your Storage Space...18

3 Installing maxView Storage Manager..19
 Before You Begin the Installation...19
 Gather Installation Information...19
 Download the Installation Package..19
 Installing on Windows..20
 Installing on Red Hat, CentOS, or SuSE Linux...21
 Installing on Ubuntu Linux..21
 Installing on VMware...22
 Installing on a Guest Operating System..23
 Installing on a Windows Guest OS...23
 Installing on a Linux Guest OS...24
 Running maxView Storage Manager from a Bootable USB Image...24
 Uninstalling maxView Storage Manager...25
 Uninstalling from Windows...25
 Uninstalling from Red Hat, CentOS, or SuSE Linux...25
 Uninstalling from Ubuntu Linux..26
 Uninstalling from VMware..26

4 Exploring maxView Storage Manager..27
 Starting maxView Storage Manager and Logging In ..27
 Working in maxView Storage Manager..27
 Overview of the Main Window..28
 The Enterprise View..28
 What do the Enterprise View Icons Mean?...30
 The Ribbon...30
 The Storage Dashboard...31
 Checking System Status from the Main Window..31
 Revealing More Device Information..32
 Getting Help..33
 Logging Out of maxView Storage Manager..34

5 Building Your Storage Space..35
 Overview..35
 Choosing a Management System...35
 'Local' or 'Remote'?..35
6 Protecting Your Data...47
 Dedicated Spare or Auto-Replace Spare?...47
 Hot Spare Limitations..47
 Assigning a Dedicated Hot Spare ..47
 Assigning an Auto-Replace Hot Spare ...49
 Removing a Hot Spare..51
 Setting the Spare Activation Mode ..53

7 Modifying Your Storage Space..55
 Understanding Arrays and Logical Drives...55
 Creating and Modifying Logical Drives...55
 Including Different-sized Disk Drives in a Logical Drive ..56
 Creating a Logical Drive Using Available Segments...57
 Enabling Background Consistency Check ..57
 Moving a Logical Drive ..58
 Moving an Array..59
 Working with Mirrored Arrays..61
 Creating a Split Mirror Backup ...61
 Re-mirroring, Rolling Back, or Reactivating a Split Mirror Backup ...62
 Heaing an Array...63
 Changing the Logical Drive Rebuild Priority..64
 Renaming a Logical Drive..65
 Deleting an Array or Logical Drive ..65

8 Maintaining Physical Devices ..67
 Viewing Device Properties ..67
 Locating Drives in Your Storage Space...67
 Locating a Disk Drive...68
 Locating Physical Disks in an Array or Logical Drive ...68
 Working with Failed or Failing Disk Drives..69
 Replacing Disk Drives in a Logical Drive ..69
 Setting a Disk Drive to 'Failed' ...69
 Erasing a Disk Drive..70
 Configuring the Global Physical Drive Write Cache Policy..70
 Working with Controllers..71
 Rescanning a Controller..71
 Optimizing Controller Performance..71
 Changing the Connector Operating Mode...73
 Setting the POST Prompt Timeout..73
 Working with System Alarms...74
 Updating Controller, Enclosure, and Disk Drive Firmware..75
 Before You Begin...75
 Updating the Controller Firmware ..75
 Updating the Disk Drive Firmware ..78
 Updating the Enclosure Firmware ..79

9 Monitoring Status and Activity...81
 Monitoring Options..81
 Checking Status from the Main Window..81
Appendix A Silent Installation on Windows and Linux ... 108
Completing a Silent Installation .. 108
Windows Silent Installation ... 108
Switches, Properties, and Values ... 109
Linux Silent Installation ... 109
Example Command Line Installations ... 110

Appendix B Using the maxView Plugin for VMware vSphere Web Client 111
Installing the maxView Plugin for vSphere Web Client ... 111
Starting the maxView Plugin for vSphere Web Client .. 112
Monitoring maxView Resources in vSphere Web Client .. 113

Appendix C Using maxView Storage Manager with HBAs and Non-RAID Mode Controllers 116

Appendix D Selecting the Best RAID Level ... 118
Comparing RAID Levels .. 118
Understanding Drive Segments .. 118
Non-redundant Logical Drives (RAID 0) .. 119
RAID 1 Logical Drives .. 119
RAID 1 Enhanced Logical Drives...120
RAID 10 Logical Drives..121
RAID 5 Logical Drives..122
RAID 5EE Logical Drives..123
RAID 50 Logical Drive...124
RAID 6 Logical Drives..125
RAID 60 Logical Drives..125

Appendix E Icons At-a-Glance..126
PMC Adaptec Product Support
If you have questions about installing or using your PMC Adaptec product, check this document first—you will find answers to most of your questions. If you need further assistance, use the support options listed below. To expedite your service, have your computer in front of you.

Note: Please visit the Support section of www.adaptec.com for the most up to date contact information.

Self Help and Support in English
- Search the Adaptec Support Knowledgebase (ASK) at ask.adaptec.com for articles, troubleshooting tips, and frequently asked questions for your product.
- For support via e-mail, submit your question at ask.adaptec.com.
- To contact Technical Support, visit our product support site at start.adaptec.com and click on "Contact Support" for options.

Technische Informationen und Support in Deutsch
- Besuchen Sie unsere Webseite www.adaptec.com/de
- Suchen Sie in der Adaptec Support Knowledgebase (ASK) unter ask.de.adaptec.com nach Artikeln, Tipps zur Fehlerbehebung und häufig gestellten Fragen zu Ihrem Produkt.
- Support per Email erhalten Sie unter ask.de.adaptec.com.
- Um den Technischen Support zu kontaktieren, besuchen Sie uns bitte unter start.adaptec.com und klicken Sie auf „Support kontaktieren“, für Auswahloptionen.

Техническая поддержка и информация на русском языке
- База знаний Adaptec (ASK) на сайте ask.ru.adaptec.com ask-ru.adaptec.com – статьи, советы по устранению неисправностей и часто задаваемые вопросы о Вашем продукте.
- Для поддержки по электронной почте отправьте Ваш запрос на сайте ask-ru.adaptec.com
- Для обращения в службу Технической Поддержки, посетите наш web сайт start.adaptec.com и используйте ссылку "Contact Support".

日本語での技術情報とサポート
- 弊社のウェブサイト、www.adaptec.com/ja-ja をご覧ください。
- ask.adaptec.co.jp のAdaptec Support Knowledgebase (ASK) で、お使いの製品の情報 トラブルシューティングのヒント、よくある質問を検索してください。
- Eメールでのサポートには ask.adaptec.co.jp から質問を送ってください。
- テクニカルサポートへコントクトするには、弊社ウェブサイトstart.adaptec.comをご覧になり、"Contact Support”をクリックして下さい。
Software License Agreement

PLEASE READ CAREFULLY: THE USE OF THIS SOFTWARE IS SUBJECT TO THE SOFTWARE LICENSE TERMS OF PMC-SIERRA, INC. AND OTHER LICENSORS WHOSE SOFTWARE MAY BE BUNDLED WITH THIS PRODUCT.

BY YOUR USE OF THE SOFTWARE INCLUDED WITH THIS PRODUCT YOU AGREE TO THE LICENSE TERMS REQUIRED BY THE LICENSOR OF THAT SOFTWARE, AS SET FORTH DURING THE INSTALLATION PROCESS. IF YOU DO NOT AGREE TO THE LICENSE TERMS APPLICABLE TO THE SOFTWARE, YOU MAY RETURN THE ENTIRE UNUSED PRODUCT FOR A FULL REFUND.

In return for acquiring a license to use the PMC-Sierra software, which may include software from third party licensors and patches made available by PMC-Sierra (“Software”), and the related documentation, you agree to the following terms and conditions:

1. License. This Agreement grants you, the Licensee, a license to:
 a. Use the Software on a single computer system, which is not intended for use by more than five (5) users; and:
 b. Make one copy of the Software in machine readable form solely for back-up purposes, provided you reproduce PMC-Sierra's copyright proprietary legends. Notwithstanding the foregoing, the Software may be used on the home, laptop or other secondary computer of the principal user of the Software, and an additional copy of the Software may be made to support such use. As used in this license, the Software is “in use” when it is either loaded into RAM or installed on a hard disk or other permanent memory device. The Software may be “in use” on only one computer at any given time. (Different license terms and fees are applicable for networked or multiple user applications.) As a specific condition of this license, you agree to use the Software in compliance with all applicable laws, including copyright laws, and that you will not copy, transmit, perform or distribute any audio or other content using the Software without obtaining all necessary licenses or permissions from the owner of the content.

2. Restrictions. You may not distribute copies of the Software to others or electronically transfer the Software from one computer to another over a network. You may not post or otherwise make available the Software, or any portion thereof, in any form, on the Internet. You may not use the Software in a computer service business, including in time sharing applications. The Software contains trade secrets and, in order to protect them, you may not decompile, reverse engineer, disassemble, or otherwise reduce the Software to a human-perceivable form. YOU MAY NOT MODIFY, ADAPT, TRANSLATE, RENT, LEASE, LOAN, RESELL FOR PROFIT, DISTRIBUTE, NETWORK OR CREATE DERIVATIVE WORKS BASED UPON THE SOFTWARE OR ANY PART THEREOF.

3. Ownership of Software. As Licensee, you own the media upon which the software is recorded or fixed, but PMC-Sierra and its licensors retain title and ownership of the Software recorded on the original media and all subsequent copies of the Software, regardless of the form or media in which or on which the original and other copies may exist. This license is not a sale of the Software or any copy.

4. Confidentiality. You agree to maintain the Software in confidence and that you will not disclose the Software to any third party without the express written consent of PMC-Sierra. You further agree to take all reasonable precautions to preclude access of unauthorized persons to the Software.

5. Term. This license is effective until January 1, 2045, unless terminated earlier. You may terminate the license at any time by destroying the Software (including the related documentation) together with all copies or modifications in any form. PMC-Sierra will have the right to terminate our license immediately if you fail to comply with any term or condition of this Agreement. Upon any termination, including termination by you, you must destroy the Software (including the related documentation), together with all copies or modifications in any form.

6. Special Terms Applicable to Databases. Where a database is included with the Software, you acknowledge that it is licensed only in connection with the use of the Software to perform disc
creation, and that the database and all data derived therefrom must be maintained in confidence in accordance with the provisions of Section 4. This license does not grant you any rights to distribute or disclose such database or data.

7. Limited Warranty. PMC-Sierra and its Licensor warrant only that the media upon which the Software is furnished will be free from defects in material or workmanship under normal use and service for a period of thirty (30) days from the date of delivery to you. PMC-SIERRA AND ITS LICENSORS DO NOT AND CANNOT WARRANT THE PERFORMANCE OR RESULTS YOU MAY OBTAIN BY USING THE SOFTWARE OR DOCUMENTATION. THE FOREGOING STATES THE SOLE AND EXCLUSIVE REMEDIES PMC-SIERRA AND ITS LICENSORS WILL PROVIDE FOR BREACH OF WARRANTY. EXCEPT FOR THE FOREGOING LIMITED WARRANTY, PMC-SIERRA AND ITS LICENSORS MAKE NO WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED, AS TO NON-INFRINGEMENT OF THIRD PARTY RIGHTS, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow the exclusion of implied warranties or limitations on how long an implied warranty may last, so the above limitations may not apply to you. This warranty gives you specific legal rights and you may also have other rights which vary from state to state.

8. The entire liability of PMC-Sierra and its licensors, and your exclusive remedy for a breach of this warranty, shall be:
 a. The replacement of any media not meeting the above limited warranty which is returned to PMC-Sierra; or:
 b. if PMC-Sierra or its distributor is unable to deliver replacement media which is free from defects in materials or workmanship, you may terminate this Agreement by returning the Software and your money will be refunded.

9. Limitation of Liability. IN NO EVENT WILL PMC-SIERRA OR ITS LICENSORS BE LIABLE TO YOU FOR ANY INCIDENTAL, CONSEQUENTIAL OR INDIRECT DAMAGES, INCLUDING ANY LOST PROFITS, LOST SAVINGS, OR LOSS OF DATA, EVEN IF PMC-SIERRA OR A LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY ANY OTHER PARTY. Some states do not allow the exclusion or limitation of special, incidental, or consequential damages, so the above limitation or exclusion may not apply to you.

10. Export. You acknowledge that the laws and regulations of the United States and other countries may restrict the export and re-export of the Software. You agree that you will not export or re-export the Software or documentation in any form in violation of applicable United States and foreign law.

11. Government Restricted Rights. The Software is subject to restricted rights as follows. If the Software is acquired under the terms of a GSA contract: use, reproduction or disclosure is subject to the restrictions set forth in the applicable ADP Schedule contract. If the Software is acquired under the terms of a DoD or civilian agency contract, use, duplication or disclosure by the Government is subject to the restrictions of this Agreement in accordance with 48 C.F.R. 12.212 of the Federal Acquisition Regulations and its successors and 49 C.F.R. 227.7202-1 of the DoD FAR Supplement and its successors.

12. General. You acknowledge that you have read this Agreement, understand it, and that by using the Software you agree to be bound by its terms and conditions. You further agree that it is the complete and exclusive statement of the agreement between PMC-Sierra and you, and supersedes any proposal or prior agreement, oral or written, and any other communication between PMC-Sierra and you relating to the subject matter of this Agreement. No additional or any different terms will be enforceable against PMC-Sierra unless PMC-Sierra gives its express consent, including an express waiver of the terms of this Agreement, in writing signed by an officer of PMC-Sierra. You assume full responsibility for the use of the Software and agree to use the Software legally and responsibly. This Agreement shall be governed by California law, except as to copyright matters, which are covered by Federal law. This Agreement is deemed entered into at Sunnyvale, California by both parties. Should any provision of this Agreement be declared unenforceable in any jurisdiction, then such provision shall be deemed severable from this Agreement and shall not affect the remainder hereof. All rights in the Software not specifically granted in this Agreement are reserved by PMC-Sierra.
Should you have any questions concerning this license, contact:

PMC-Sierra, Inc.
Legal Department
1380 Bordeaux Drive
Sunnyvale, CA 94089
(408) 239-8000
1 About this Guide

maxView Storage Manager™ is a browser-based software application that helps you build a storage space using PMC Adaptec Smart-family controllers, disk drives, and enclosures, and then manage your stored data, whether you have a single controller installed in a server or multiple controllers, servers, and enclosures.

This guide describes how to install and use maxView Storage Manager to build and manage direct attached storage, that is, storage where the controller and disk drives reside inside, or are directly attached to, the computer accessing them, similar to the basic configurations shown in the figures below:

Note: This guide focuses on using maxView Storage Manager with PMC Adaptec Smart-family controllers (RAID/HBA). For information about using maxView Storage Manager with PMC Adaptec legacy RAID controllers (Series 6/7/8), see How to Find More Information on page 13.

What You Need to Know Before You Begin

This guide is written for data storage and IT professionals who want to create a storage space for their online data. You should be familiar with computer hardware, operating system administration, and Redundant Array of Independent Disks (RAID) technology.

If you are using maxView Storage Manager as part of a complex storage system, with multiple servers, enclosures and Smart-family controllers (RAID/HBA), you should be familiar with network administration, have knowledge of Local Area Networks (knowledge of storage area networks (SANs) is not required), and be familiar with the input/output (I/O) technology of the storage devices on your network, such as Serial ATA (SATA) or Serial Attached SCSI (SAS).

Terminology Used in this Guide

Because this guide provides information that can be used to manage multiple PMC Adaptec Smart-family controllers in a variety of configurations, the generic term “storage space” is used to refer to the controller(s), disk drives, and systems being managed with maxView Storage Manager.
For efficiency, the term “component” or “components” is used when referring generically to the physical and virtual parts of your storage space, such as systems, disk drives, controllers, and logical drives.

Many of the terms and concepts referred to in this guide are known to computer users by multiple names. In this guide, this terminology is used:

- Controller (also known as adapter, board, or I/O card)
- Disk drive (also known as hard disk, hard drive, or hard disk drive)
- Solid State Drive (also known as SSD or non-rotating storage media)
- Logical drive (also known as a logical device)
- Array (also known as a logical device)
- System (also known as a server, workstation, or computer)
- Enclosure (also known as a storage enclosure or disk drive enclosure)

How to Find More Information

You can find more information about your PMC Adaptec Smart-family controller, management software, and utilities by referring to these documents, available for download from the PMC Web site at www.pmcs.com/myPMC:

- **Adaptec SmartIOC 2000 Installation and User’s Guide**—Describes how to install drivers and configure the SmartIOC 2000 controller for initial use (PMC-2152189).
- **Adaptec SmartIOC 2000 Command Line Utility User’s Guide**—Describes how to use the ARCCONF utility to perform RAID configuration and storage management tasks from an interactive command line (PMC-2152175).
- **PMC Smart Storage Administrator Command Line Utility User Guide**—Describes how to use the PMC SSA drive configuration command line program for SmartIOC 2000 controllers (PMC-2152157).
- **Adaptec SmartIOC 2000 Software/Firmware Release Notes**—Provides driver, firmware, and release package information, and known issues (PMC-2152108).
- **README: maxView Storage Manager & ARCCONF Command Line Utility**—Provides product information, installation notes, and known issues for maxView Storage Manager and ARCCONF command line utility.

For information about using maxView Storage Manager with PMC Adaptec legacy RAID controllers (Series 6/7/8), see the **maxView Storage Manager User’s Guide** (CDP-00285-06-A).
2 Introduction to maxView Storage Manager

This section introduces the maxView Storage Manager software, explains the concept of a “storage space,” and provides a checklist of getting-started tasks.

Getting Started

The first part of this guide provides the information you need to install, start, and begin to use maxView Storage Manager. Follow these general steps:

Step 1: Familiarize yourself with the software components of maxView Storage Manager, review the system requirements, and study the configuration examples that illustrate how to build and grow your storage space (described in the remainder of this chapter).

Step 2: Install maxView Storage Manager on every system that will be part of your storage space (see Installing maxView Storage Manager on page 19).

Step 3: Start maxView Storage Manager and explore its graphical user interface (see Exploring maxView Storage Manager on page 27).

Step 4: Build your storage space (see Building Your Storage Space on page 35).

About maxView Storage Manager

maxView Storage Manager is a browser-based software application that helps you build a storage space for your data, using PMC Adaptec RAID controllers, disk drives, Solid State Drives (SSDs), and enclosures.

With maxView Storage Manager, you can group disk drives into arrays and logical drives and build in redundancy to protect your data and improve system performance. You can also use maxView Storage Manager to monitor and maintain all the controllers, enclosures, and disk drives in your storage space from a single location.

The maxView Storage Manager GUI, or graphical user interface, runs on most contemporary Web browsers (for a list of supported browsers, see Browser Support on page 16). A software stack comprising a Web server, Agent, and CIMOM server allows maxView Storage Manager to communicate with the controller(s) in your storage space and coordinate activity in your system.

A flexible installation model allows you to install all software components on a single machine, or distribute components on different machines across your network, with the maxView Storage Manager GUI and Web server on one machine, and the Agent and CIMOM server on others.
About the maxView Storage Manager Agent
The maxView Storage Manager Agent is designed to run in the background, without user intervention. Its job is to monitor system health, manage event notifications, task schedules, and other on-going processes on a system. It sends notices when tasks are completed successfully, and notifies you when errors or failures occur on that system.

If your storage space includes systems that won’t be connected to monitors (and therefore won’t require the graphical user interface), you can choose to install the Agent only on those systems instead of the full application.

You can manage and monitor systems running the Agent only by logging into them as remote systems (see Starting maxView Storage Manager on Remote Systems on page 36).

About the maxView Storage Manager Web Server
The maxView Storage Manager Web Server is an instance of the open-source Apache Tomcat servlet container. It runs the maxView Storage Manager Web application, and serves static and dynamic content to the maxView Storage Manager GUI. The maxView Web Server is installed automatically with the maxView Storage Manager GUI.

About the maxView Storage Manager CIM Server
The maxView Storage Manager CIM Server is an instance of the open-source Pegasus CIM Object Manager, or CIMOM. In maxView Storage Manager, the CIM Server manages the SMI-S hardware provider and notification provider, which monitor the controllers in your system and provide notifications to the maxView Storage Manager Agent. The maxView Storage Manager CIM Server is installed automatically with the maxView Storage Manager Agent.
System Requirements

To install maxView Storage Manager, each system in your storage space must meet these requirements:

- PC-compatible computer with Intel Pentium processor, or equivalent
- At least 4 GB of RAM
- 350 MB of free disk drive space
- One of these operating systems:
 - Microsoft® Windows® Server, Windows 7, Windows 8.x, Windows 10
 - Red Hat® Enterprise Linux
 - SuSE Linux Enterprise Server
 - Ubuntu Linux
 - CentOS
 - VMware ESXi

See the [Release Notes](#) for a complete list of supported operating systems and versions.

Note: maxView Storage Manager can also be used before an operating system is installed. See [Running maxView Storage Manager from a Bootable USB Image](#) for more information.

Browser Support

To run the maxView Storage Manager GUI, each system in your storage space must be running one of these Web browsers:

- Microsoft® Internet Explorer® 9, 10, 11 or newer
- Google® Chrome™ 32 or newer
- Mozilla Firefox® 31 or newer
Typical Storage Space Configurations

The following examples show typical storage spaces that you can build with maxView Storage Manager. You can grow your storage space as your requirements change by adding more systems, controllers, disk drives, and enclosures, and by adding redundant logical drives for protection against data loss.

A Simple Storage Space

This example shows a simple storage space that might be appropriate for a small business. This storage space includes one RAID controller and three disk drives installed in a server. For data protection, the disk drives have been used to build a RAID 5 logical drive.

An Advanced Storage Space

This example shows how you can grow your storage space as the requirements of your application change. On the first server, segments from each disk drive have been used to build two RAID 5 logical drives. A second server connected to two 12-disk enclosures has been added. The additional storage space has been used to create two RAID 50 logical drives. The Administrator of this storage space can create and modify logical drives and monitor both controllers, disk drives, and enclosures from a single system running the maxView Storage Manager GUI.
Continuing to Grow Your Storage Space

For more advanced applications, such as high-volume transaction processing in a "cloud" or data center environment, maxView Storage Manager helps you grow your storage space to include multiple controllers, storage enclosures, and disk drives in multiple locations.

In this example, multiple systems, servers, disk drives, and enclosures have been added to the storage space. The Administrator can create and modify logical drives and monitor all the controllers, enclosures, and disk drives in the storage space from any system running the maxView Storage Manager GUI.
Installing maxView Storage Manager

This section describes how to install and uninstall maxView Storage Manager on the supported operating systems. It also describes how to run maxView Storage Manager from a bootable USB image, before the application is installed on an operating system.

Note: To perform a silent installation without messages or user interaction, follow the instructions in Silent Installation on Windows and Linux on page 108.

Note: VMware users can install the maxView plugin for vSphere Web Client for Windows and monitor storage resources without using the maxView Storage Manager GUI. For more information, see Using the maxView Plugin for VMware vSphere Web Client on page 111.

Before You Begin the Installation

Complete the following steps before you begin the installation.

Gather Installation Information

Prepare the following information:

- Administrator account user name and password for your operating system.
- CIM Server port number. The default port is recommended (5988). If you want to use a different port, select any one between 65500 and 65535 and it will be assigned as the CIM Server http port for maxView Storage Manager installation. (The selected port must be free at installation time.) The installation will verify the availability of this port. There is no guarantee that any port number besides the default will work in the future as any other application can claim this port. For more information on the CIM Server, see About the maxView Storage Manager CIM Server on page 15.
- maxView Web Server port number. The default port is recommended (8443). If the default port is not available, another port number will be automatically assigned. For more information on the Web Server, see About the maxView Storage Manager Web Server on page 15.

Download the Installation Package

Complete these steps to download the installation package for your operating system(s) from the PMC Web site:

1. Open a browser window, then type www.pmcs.com/myPMC in the address bar.
2. Enter your myPMC account credentials.
3. Navigate to the HBA 1000, SmartIOC 2000, PM8068 or PM8069 product page.
4. Download the maxView Storage Manager installation package (zip file archive).
5. When the download completes, extract the package contents to a temporary location on your machine.

Note: See the Release Notes for a complete list of installer packages for the supported operating systems.
Installing on Windows

This section describes how to install maxView Storage Manager on Windows systems.

Note: You need administrator privileges to install maxView Storage Manager. For details on verifying privileges, refer to your operating system documentation.

1. Open Windows Explorer or My Computer, then change to the directory where the Windows installer package is located (see Download the Installation Package on page 19 for details).

2. Double-click the setup program for your operating system version:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>setup_asm_x64.exe</td>
<td>Windows 64-bit</td>
</tr>
<tr>
<td>setup_asm_x86.exe</td>
<td>Windows 32-bit</td>
</tr>
</tbody>
</table>

The Installation wizard opens.

3. Click Next to begin the installation, click I accept the terms of the license..., then click Next.

4. In the Configuration Settings screen, accept or modify the default server ports:
 a) CIM Server Port default: 5988.
 b) Web Server Port default: 8443.

5. To run maxView Storage Manager in Standalone mode, disabling remote system management from the GUI, click the Local Host check box.

 Note: In Standalone mode, maxView Storage Manager displays the system name as "localhost" and events are displayed as "127.0.0.1/localhost".

6. Click Next, then click OK to verify the CIM Server and Web Server port numbers.

7. In the Features screen, ensure that GUI and/or Agent is selected. Optionally, select CLI Tools. Then click Next.

 Note: You must install the Agent on at least one machine.
8. Click **Install** to begin the installation.

9. Repeat these steps to install maxView Storage Manager on every Windows system that will be part of your storage space.

When the installation is complete you receive a confirmation message and the maxView Storage Manager icon is placed on your desktop.

Installing on Red Hat, CentOS, or SuSE Linux

This section describes how to install maxView Storage Manager on systems running Red Hat Linux, CentOS, or SuSE Linux. For a list of supported Linux operating systems, see System Requirements.

1. Open a shell window, then change to the directory where the Linux installer package is located (see Download the Installation Package on page 19 for details).

2. Run the `.bin` file for your operating system version (x.xx-xxxxx=version-build number):

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux 64-bit</td>
<td>./StorMan-X.XX-XXXXX.x86_64.bin</td>
</tr>
<tr>
<td>Linux 32-bit</td>
<td>./StorMan-X.XX-XXXXX.i386.bin</td>
</tr>
</tbody>
</table>

3. When prompted for configuration details, enter the following:

 - Enter the CIM Server HTTP Port: [default:5988]
 - LocalHost Mode: [default: No]

 Note: LocalHost mode disables remote system management from the GUI. maxView Storage Manager displays the system name as "localhost", and events are displayed as "127.0.0.1/localhost".

4. Repeat these steps to install maxView Storage Manager on every Linux system that will be part of your storage space.

 When the installation completes a confirmation message is displayed and the maxView Storage Manager icon is placed on your desktop.

Installing on Ubuntu Linux

This section describes how to install maxView Storage Manager on systems running Ubuntu Linux.

1. Open a shell window, then change to the directory where the Linux installer package is located (see Download the Installation Package on page 19 for details).

2. Install the `.deb` package for your operating system version (x.xx-xxxxx=version-build number).
3. When prompted for configuration details, enter the following:
 Enter the CIM Server HTTP Port: [default:5988]
 LocalHost Mode: [default: No]
 Note: LocalHost mode disables remote system management from the GUI. maxView Storage Manager displays the system name as "localhost", and events are displayed as "127.0.0.1/localhost".

4. Repeat these steps to install maxView Storage Manager on every Ubuntu Linux system that will be part of your storage space.

When the installation is complete you receive a confirmation message and the maxView Storage Manager icon is placed on your desktop.

Installing on VMware

Use the following procedure to install the .vib files for a VMware ESXi 5.5 or 6.0 system. Perform the installation from a remote system running a Telnet/SSH client. Use a terminal emulator to access the ESXi server remotely.

1. Copy the following files from the installer download location to the `/tmp` directory on your local ESXi server (see Downloading the Installer Package for details):
 - vmware-esx-provider-arconf.vib
 - vmware-esx-provider-arc-cim-provider.vib

 The arconf.vib is for command line communication.
 The arc-cim-providervib is for remote management communication.

2. Check for existing installation of arconf.
   ```bash```
esxcli software vib list | grep arconf```
```
3. Remove the existing arconf package.
   ```bash```
esxcli software vib remove -n arconf
```
 When the package is removed, you receive the message "Reboot Required: false."

4. Check for an existing installation of arc-cim-provider.
   ```bash```
esxcli software vib list | grep arc-cim-provider```
```
5. Remove the existing arc-cim-provider package.
   ```bash```
esxcli software vib remove -n arc-cim-provider
```
 When the package is removed, you receive the message "Reboot Required: true."

6. Set the installation acceptance level to either PartnerSupported or CommunitySupported:
   ```bash```
esxcli software acceptance set --level=PartnerSupported```
```
7. Install the arconf package.
   ```bash```
esxcli software vib install --no-sig-check -v /tmp/vmware-esx-provider-arconf.vib
```
 When the package is installed, you receive the message "Reboot Required: false."

8. Install the arc-cim-provider package.
   ```bash```
esxcli software vib install --no-sig-check -v /tmp/vmware-esx-provider-arc-cim-provider.vib
```
 When the package is installed, you receive the message "Reboot Required: true."

9. Reboot the system.

Installing on a Guest Operating System

This section describes how to install maxView Storage Manager on a VMware guest operating system. You can install maxView Storage Manager on a Windows guest OS or Linux guest OS.

Installing on a Windows Guest OS

Use the following procedure to install maxView Storage Manager on a Windows guest OS running on VMware.

1. On the VMware guest OS, change to the directory where the guest OS installer package is located (see Downloading the Installer Package for details).
2. Double-click the setup program for your operating system:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows GOS 64-bit</td>
<td>Setup_maxView_GOS_x64.exe</td>
</tr>
<tr>
<td>Windows GOS 32-bit</td>
<td>Setup_maxView_GOS_x86.exe</td>
</tr>
</tbody>
</table>

 The Installation wizard opens.

3. Choose the hypervisor type (ESXi Server), then click Next.

4. Enter the following configuration details:
 a) Host IP Address (ESXi host)
 b) Web Server Port: 8443
 c) Host user name (default: root)
 d) Operating system password/password confirmation
5. Click Next, then click Install.

When the installation is complete you receive a confirmation message.

Installing on a Linux Guest OS

Use the following procedure to install maxView Storage Manager on a Linux guest OS running on VMware.

1. On the VMware guest OS, change to the directory where the Linux installer package is located (see Downloading the Installer Package for details).

2. Run the installer for your operating system version (x.xx=version number):

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux GOS 64-bit</td>
<td>./Storman-X.XX.GOS86_64.bin</td>
</tr>
<tr>
<td>Linux GOS 32-bit</td>
<td>./Storman-X.XX.GOS32.bin</td>
</tr>
</tbody>
</table>

3. At the prompt, choose the GOS type. Enter 1 for ESXi:

Select the GOS Type. 1.ESXi Server

4. Enter the following configuration details:

Hypervisor IP address
Hypervisor username [default: root]
Hypervisor password
Event Listener Port [default: 65500]

When the installation is complete you receive a confirmation message.

Running maxView Storage Manager from a Bootable USB Image

Running maxView Storage Manager from a bootable USB image allows you to configure your controller before you install the operating system. The procedure consists of three basic steps:

1. Download the bootable USB image from the PMC Web Site

2. Create a "live" image on a USB flash drive

 Note: We recommend using LiveUSB Creator, available at fedorahosted.org (see Step [2], below).

3. Boot from the USB flash drive, login to maxView Storage Manager and configure your controller
The bootable USB image is not a substitute for running maxView Storage Manager as an installed application. Many of the features and functions described in this guide are not available when you run maxView Storage Manager from a bootable USB image. Use the bootable USB image only to configure your controller before you install an operating system.

Note: Before you begin, ensure that your system is set up to boot from a USB drive. Check the system BIOS to see if the USB drive is included in the boot sequence. (For more information, see your system's documentation.) You will need a USB drive with at least 1GB of storage to complete this task. To run the bootable USB image, the target machine must have at least **4GB** of memory.

To run maxView Storage Manager from a bootable USB image:

1. **Download the bootable USB image from the PMC Web site:**
 a) Open a browser window, then type `www.pmcs.com/myPMC` in the address bar.
 b) Enter your myPMC account credentials.
 c) Navigate to the HBA 1000, SmartIOC 2000, PM8068 or PM8069 product page.
 d) Locate and download the bootable USB image (zip file archive).
 e) Extract the contents of the bootable image archive file to a temporary location.
 The archive contains one file: the maxView Storage Manager bootable iso image.

2. **Create a "live" image on the USB drive:**
 a) Run the LiveUSB Creator utility setup program at https://fedorahosted.org/releases/l/i/liveusb-creator/liveusb-creator- 3.11.8-setup.exe.
 b) Start LiveUSB Creator from the Windows All Programs menu.
 c) In the Use Existing Live CD field, click **Browse**, then locate and select the maxView Storage Manager bootable iso image.
 d) In the Target Device field, select the USB flash drive (e:\, for instance).
 e) Click **Create Live USB**.

3. **Insert the USB drive on the machine you want to configure.**
 The Boot menu opens in a shell window.

4. **Select **Launch maxView** from the menu.**
 After a minute or so, the maxView Storage Manager login screen opens in a browser window.
 Note: If you prefer to configure the controller from the command line, select **Launch arcconf** from the Boot menu, then enter **root**, with no password, for the login credentials.

5. **Enter root/root for the login credentials.**
6. **Continue with Creating Arrays and Logical Drives on page 38.**

Uninstalling maxView Storage Manager

To uninstall maxView Storage Manager, follow the instructions for your operating system.

Uninstalling from Windows

To uninstall maxView Storage Manager from a Windows system, use the Add or Remove Programs tool in the Control Panel. All maxView Storage Manager components are uninstalled.

When the uninstall process is complete, you receive a confirmation message and the maxView icon is removed from your desktop.

Uninstalling from Red Hat, CentOS, or SuSE Linux

This section describes how to uninstall maxView Storage Manager from systems running Red Hat, CentOS, SuSE Linux.

Type the command `rpm -e StorMan`

When the uninstall process is complete, you receive a confirmation message and the maxView icon is removed from your desktop.
Uninstalling from Ubuntu Linux

This section describes how to uninstall maxView Storage Manager from systems running Ubuntu Linux.

Type the command `dpkg -r StorMan`

When the uninstall process is complete, you receive a confirmation message and the maxView icon is removed from your desktop.

Uninstalling from VMware

Use the following procedure to remove maxView Storage Manager from a VMware ESXi 5.5 or 6.0 system.

1. Log in with the user name: root
2. List the installed packages:

   ```
   esxcli software vib list | grep arcconf
   esxcli software vib list | grep arc-cim-provider
   ```

3. Remove the arcconf package:

   ```
   esxcli software vib remove -n arcconf
   ```

4. Remove the arc-cim-provider package:

   ```
   esxcli software vib remove -n arc-cim-provider
   ```

5. Reboot the system.

To verify that maxView Storage Manager is uninstalled, repeat Step 2. If no results are shown, the software was uninstalled successfully.
Exploring maxView Storage Manager

This section familiarizes you with the main features of the maxView Storage Manager graphical user interface. It describes how to start and log into maxView Storage Manager. It also explains how to get help and log out of maxView Storage Manager when you are finished working with the application.

Starting maxView Storage Manager and Logging In

The procedure for starting and logging into maxView Storage Manager is the same for all operating systems with a graphical desktop. You can login as the Administrator, with full management-level access to your storage space, or as a Standard user, with restricted access to your storage space (see Working in maxView Storage Manager on page 27 for more information about access permissions).

1. On the desktop, double-click the maxView Storage Manager desktop icon.

 The login window opens in the default browser.

 ![Login Window](image1)

 Note: If you do not have an icon for maxView Storage Manager on your desktop, open a browser window, then type this URL in the address bar and press Return:
 https://127.0.0.1:8443/maxview/manager/login.xhtml.

2. For full management-level access to your storage space, enter the Administrator account username and password for your operating system. For Standard-level access to your storage space, enter your regular network login credentials. Then click Login.

 The maxView Storage Manager main window opens.

Working in maxView Storage Manager

You can perform most tasks in maxView Storage Manager by:

- Selecting storage components in the Enterprise View (controllers, hard drives, logical drives, and so on)
- Clicking icons on the ribbon, at the top of the maxView Storage Manager main window
- Working with information in the Storage Dashboard and Chart View
- Checking status in the Event Log and Task Log

If you are logged in as the Administrator, you have full access to manage and modify the components of your storage space, using all of the features of maxView Storage Manager. If you are logged in as a Standard user, you have restricted "view-only" access to your storage space, with limited ability to perform non-destructive operations, as described in the table below.

Note: maxView Storage Manager allows you to give Standard users Administrator privileges. For details, see Granting Standard Users Admin Privilege on page 103.

<table>
<thead>
<tr>
<th>Standard users can:</th>
<th>Standard users can’t:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rescan controllers</td>
<td>Create arrays and logical drives</td>
</tr>
</tbody>
</table>
Standard users can:
- Save activity logs
- Identify physical devices, logical devices, and enclosures
- Silence alarms
- View component properties on the Storage Dashboard

Standard users can’t:
- Modify arrays and logical drives
- Delete arrays and logical drives
- Perform data migrations
- Clear the controller configuration

Overview of the Main Window

The main window of maxView Storage Manager has three main panels—left, right, and bottom—plus the ribbon, at the top of the window.

The left panel always shows the Enterprise View. The bottom panel shows the Event Log and Task Log. The right panel shows the Storage Dashboard and Chart View. Different information appears in the right panel depending on which component is selected in the Enterprise View.

In example below, a controller is selected in the Enterprise View, and the right panel displays the Storage Dashboard for the controller, with a chart view of its storage space.

You can resize the panels and scroll horizontally or vertically as needed, to view more or less information.

The Enterprise View

The Enterprise View is an expandable “tree” that shows the physical and logical components of your storage space. The Enterprise View lists the local system (the system you’re working on) and any remote systems that you have logged in to from the local system. (See ‘Local’ or ‘Remote’? on page 35 for more information.)
Expand a system in the Enterprise View to see its controllers, arrays, logical drives ("devices"), physical drives, and enclosures.

In the figure below, a controller is expanded in the Enterprise View, revealing the physical and logical devices associated with that controller.

By selecting a controller in the Enterprise View...

...the disk drives or enclosures and disk drives connected to it and the arrays and logical drives created with those disk drives appear in the Physical and Logical Devices trees.
You can perform most tasks in maxView Storage Manager by selecting a component in the Enterprise View, such as a controller or disk drive, then using the related commands on the **ribbon**, as described in the section below.

What do the Enterprise View Icons Mean?

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System with controller and directly attached disk drives or enclosures</td>
</tr>
<tr>
<td></td>
<td>Controller</td>
</tr>
<tr>
<td></td>
<td>Enclosure</td>
</tr>
<tr>
<td></td>
<td>Logical device</td>
</tr>
<tr>
<td></td>
<td>Array (healthy)(^1)</td>
</tr>
<tr>
<td></td>
<td>Hard disk drive</td>
</tr>
<tr>
<td></td>
<td>Solid State Drive (SSD)</td>
</tr>
<tr>
<td></td>
<td>Connector or other physical device</td>
</tr>
</tbody>
</table>

The Ribbon

Most tasks in maxView Storage Manager are available from the **ribbon**, at the top of the main window. The ribbon replaces toolbars and menus in maxView Storage Manager to help you quickly find the commands you need to complete a task.

The ribbon is organized into groups of related tasks for Systems, Controllers, Arrays, Logical Devices, Physical Devices, and maxCache Devices\(^2\). The Home group (on the left) provides commands for working with remote systems (see [Managing Remote Systems](#) on page 97). Active options on the ribbon vary, depending on which type of component is selected in the Enterprise View.

For instance, if you select a controller in the Enterprise View, these options are activated:

- Create Logical Drive in the Logical Device group
- Spare Management in the Physical Device group
- All options in the Controller group

If you select an array in the Enterprise View, options in the Array group are highlighted; selecting a disk drive highlights options in the Physical Device group; and so on.

For a description of the icons on the ribbon, see [Icons At-a-Glance](#) on page 126.

\(^1\) A green checkmark in the Enterprise View means that the component is healthy with no problems or issues. For more information, see [Identifying a Failed or Failing Component](#) on page 104.

\(^2\) Supported on PMC Adaptec legacy RAID controllers only.
The Storage Dashboard

When you select a component in the Enterprise View, maxView Storage Manager displays detailed information about that component on the Storage Dashboard. Occupying the largest portion of the main window in maxView Storage Manager, the Storage Dashboard provides status information, physical and logical device properties, resources, usage statistics, and reliability indicators for hard drives and SSDs. It also provides a chart view of free and used space in your system.

For more information about the types of information provided on the Storage Dashboard for each component in your storage space, see Viewing Component Information and Status in the Storage Dashboard on page 83; also see Revealing More Device Information.

Checking System Status from the Main Window

maxView Storage Manager includes an Event Log and Task Log for at-a-glance status and activity information for all managed systems. The Event Log provides status information and messages about activity (or events) occurring in your storage space. The Task Log provides information about current or recurring processes in your storage space, such as rebuilding a logical device. Single-click any event or task to see more information in an easier-to-read format. For more information about the Event Log and Task Log, see Viewing Activity Status in the Event Log on page 81 and Working with Scheduled Tasks.

Warning- and Error-level icons appear next to components in the Enterprise View affected by a failure or error, creating a trail, or rapid fault isolation, that helps you identify the source of a problem when it occurs. See Identifying a Failed or Failing Component on page 104 for more information.
If your storage space includes a drive enclosure with a temperature sensor, temperature, fan, and power module status is displayed on the Storage Dashboard (see Monitoring Enclosure Status on page 85).

For more information about checking status from the main window, see Monitoring Status and Activity on page 81.

Revealing More Device Information

You can reveal more information about disk drive, array, and logical drive usage in your storage space with the Resources view on the Storage Dashboard.

To reveal disk drive usage by logical drive (and vice-versa), select a controller in the Enterprise View, then open the **Resources** tab on the Storage Dashboard. As shown in the figures below, you can click a logical drive to see its member disk drives and spares; similarly, you can click a physical disk to see which array (if any) it belongs to.

Note: Click the Arrow icons, on the right side of the Resources table, to jump to that resource in the Enterprise View tree.
Two disk drives plus a dedicated hot spare comprise the selected logical drive.

Disk in Slot 0 belongs to Array B

Getting Help

maxView Storage Manager provides online help that includes conceptual information and descriptions of on-screen items and dialog boxes, in addition to step-by-step instructions for completing tasks.

To open the online help, click the Help button at the upper-right corner of the main window.

For help with a dialog box or wizard, click the question-mark icon, in the lower corner of the dialog box, for help with that specific procedure.
For help with individual options in the Set Properties dialog box (for controllers, logical drives, and physical drives), or specific information fields on the Storage Dashboard, mouse over any field or option name for a brief description of that option.

Logging Out of maxView Storage Manager

To log out of maxView Storage Manager:

1. In the Enterprise View, click on the local system.
2. Click the Logout button at the upper-right corner of the main window:

You are logged out of maxView Storage Manager and the main window is closed.
Building Your Storage Space

Follow the instructions in this section to choose a management system, log in to each system in your storage space, and create arrays and logical drives.

Note: Before beginning the tasks in this chapter, ensure that maxView Storage Manager is installed on every system that will be part of your storage space.

Overview

To build your storage space, complete these steps:

1. Choose at least one management system (see Choosing a Management System on page 35).
2. Start and log in to maxView Storage Manager on the management system (see Starting maxView Storage Manager and Logging In on page 27).
3. Start maxView Storage Manager or the Agent on all other systems (see Starting maxView Storage Manager on Remote Systems on page 36).
4. Log in to all other systems from the management system (see Logging into Remote Systems from the Local System on page 37).
5. Create arrays and logical drives for all systems in your storage space (see Creating Arrays and Logical Drives on page 38).

As your storage requirements change, you can add systems, controllers, and disk drives, then modify the arrays and logical drives in your storage space by following the instructions in Modifying Your Storage Space on page 55.

Choosing a Management System

You must designate at least one system as a **management system**, a system from which you will manage the storage on all systems in your storage space.

The management system can be any system on your network that has a video monitor and can run the maxView Storage Manager GUI and Web server.

‘Local’ or ‘Remote’?

Whenever you’re working in maxView Storage Manager, the system that you’re working on is the **local** system. All other systems in your storage space are **remote** systems. ‘Local’ and ‘remote’ are relative terms, as shown in the following figure—when you are working on system A (local system), system B is a remote system; when you are working on system B (local system), system A is a remote system.

For the purposes of this guide, the ‘local system’ is the management system.
Logging in on the Local System

To log in on the local system, see Starting maxView Storage Manager and Logging In on page 27.

Starting maxView Storage Manager on Remote Systems

You can run the maxView Storage Manager application on the remote systems in your storage space (making those systems usable as ‘management systems’). Alternatively, if your storage space includes systems that aren’t connected to monitors or that you don’t anticipate using as management systems (and therefore won’t require the GUI, or graphical user interface), you can run the Agent only on those systems. (For more information, see About the maxView Storage Manager Agent on page 15.)

- To start the full maxView Storage Manager application on a remote system, follow the instructions in Starting maxView Storage Manager and Logging In on page 27.
- To start the Agent only on a remote system, follow the instructions in Starting the Agent Only on page 36.

Starting the Agent Only

To start the maxView Storage Manager Agent only on a remote system, follow the instructions for your operating system, as described in the sections below.

In an Agent Only configuration, you must ensure that the maxView Storage Manager CIM server is also running on the remote system, and that you start the services in the proper order:

1. CIM server
2. Agent

In general, maxView Storage Manager services start automatically when the system is powered on. Use the procedures in this section to manually start and stop the services, as needed. For more information about the maxView Storage Manager Agent and CIM server, see About maxView Storage Manager on page 14.
Windows

On Windows systems, the Agent and CIM server start automatically when the system is powered on.

To verify that the Agent and CIM server are running:

1. Open the Windows Control Panel.
2. Double-click **Administrative Tools**, then double-click **Services**.
3. In the list of services, check that the maxView Storage Manager Agent is installed and running. Then verify that the maxView CIM server is running. If not, you can choose to restart the services. Be sure to observe the proper startup order: CIM server first, then the Agent.

Linux or VMware

On Linux systems and VMware Guest OSs, the Agent and CIM server start automatically when the system is started. To manually start (or stop) the Agent on Linux, enter these commands:

1. Start the CIM server:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start service</td>
<td><code>service stor_cimserver start</code></td>
</tr>
<tr>
<td>Stop service</td>
<td><code>service stor_cimserver stop</code></td>
</tr>
<tr>
<td>Check status</td>
<td><code>service stor_cimserver status</code></td>
</tr>
</tbody>
</table>

To start operations from the VMware console, use these commands:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start service</td>
<td><code>Sfcbd-watchdog start</code></td>
</tr>
<tr>
<td>Stop service</td>
<td><code>Sfcbd-watchdog stop</code></td>
</tr>
</tbody>
</table>

2. Start the Agent:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start service</td>
<td><code>service stor_agent start</code></td>
</tr>
<tr>
<td>Stop service</td>
<td><code>service stor_agent stop</code></td>
</tr>
</tbody>
</table>

Logging into Remote Systems from the Local System

Once maxView Storage Manager or the maxView Storage Manager Agent (see About the maxView Storage Manager Agent on page 15) is running on all systems in your storage space, you can log into the remote systems from the local system.

Once you have logged in to a remote system, it automatically appears in the Enterprise View each time you start maxView Storage Manager on the local system. You can work with a remote system’s controllers, disk drives, and logical drives as if they were part of your local system.

To log in to a remote system:

1. On the ribbon, in the Home group, click **Add System**.
The Add System window opens, showing a list of "discovered" systems; that is, systems on your network that are running the maxView Storage Manager Agent.

2. Select the systems you want to add to the Enterprise View, then enter the systems’ login credentials (username/password) in the space provided.

 ![Add System Window]

 Note: You can add a system manually if you don’t see the system in the list. For more information, see Manually Adding a Remote System on page 98.

3. Click **Add**.

 maxView Storage Manager connects to the remote system(s) and adds them to the list of managed systems in the Enterprise View.

 For more information about working with remote systems, see Managing Remote Systems on page 97.

Creating Arrays and Logical Drives

maxView Storage Manager provides a wizard to help you create, or configure, the arrays and logical drives in your storage space. You can choose from two configuration methods:

- Create logical drive on new array—Helps you set the RAID level for the logical drive, group disk drives and SSDs, determine logical drive size and other advanced settings.
 For instructions, see Creating a Logical Drive on a New Array on page 38.

- Create logical drive on existing array—Helps you select an array on which to create the logical drive, set the RAID level, group disk drives and SSDs, determine logical drive size and configure advanced settings.
 For instructions, see Creating a Logical Drive on an Existing Array on page 42

 Note: You cannot combine SAS and SATA drives within the same logical drive. The wizard will not allow you to select a combination of SAS/SATA drive types.

Creating a Logical Drive on a New Array

Before you can create a logical drive, you must create an array. Use the On New Array configuration method to step through the process of creating a logical drive on a new array, setting the RAID level, and configuring other settings.
To create a logical drive on an existing array, see **Creating a Logical Drive on an Existing Array** on page 42.

By default, maxView Storage Manager uses all available disk space to maximize the capacity of a new logical drive.

To create a logical drive on a new array:

1. In the Enterprise View, select a system, then select a controller on that system.
2. On the ribbon, in the Logical Device group, click **Create Logical Device**.

3. When the wizard opens, select **On New Array**, then click **Next**.

4. Select a RAID level for the logical drive, then click **Next**.
See Selecting the Best RAID Level on page 118 for more information about RAID levels.

5. Select the disk drives you want to include in the logical drive, then click **Next**. Be sure the drive type is the same for all drives (SAS or SATA, not mixed), and that you select the right number of drives for the RAID level you selected.

6. **(Optional)** In the RAID Attributes panel, customize the logical drive settings.
You can:

- Enter a name for the logical drive. Names can include any combination of letters, numbers, and spaces.
- Set the size and unit of measure for the logical drive. (By default, a new logical drive uses all available disk space.)
- Change the stripe size—the amount of data, in bytes, written per disk in the logical drive. (The default stripe size usually provides the best performance.)
- Set the initialization method to Default or Build. The initialization method determines how the logical drive is prepared for reading and writing, and how long initialization will take:
 - **Default**—Initializes parity blocks in the background while the logical drive is available for access by the operating system. A lower RAID level results in faster parity initialization.
 - **Build**—Overwrites both the data and parity blocks in the foreground. The logical drive remains invisible and unavailable to the operating system until the parity initialization process completes. All parity groups are initialized in parallel, but initialization is faster for single parity groups (RAID 5). RAID level does not affect performance during Build initialization.

 Note: Not all initialization methods are available for all RAID levels.

7. Click **Next**, then review the array and logical drive settings.

 This example shows a RAID 5 logical drive ready to be created on Array A.
8. Click Finish.
maxView Storage Manager builds the array and logical drive. Use the Event Log and Task Log to track build progress.

9. If you have other disk drives or available disk space and want to create additional arrays on the controller, repeat Steps [2]-[8].

10. Repeat Steps [1]-[9] for each controller in your storage space.

11. Partition and format your logical drives. See Partitioning and Formatting Your Logical Drives on page 45.

Creating a Logical Drive on an Existing Array

After you create an array, you can continue to build your storage space by creating more logical drives on that array. Use the On Existing Array configuration method to step through the process of creating a logical drive on an existing array, setting the RAID level, and configuring other settings.

To create a logical drive on a new array, see Creating a Logical Drive on a New Array on page 38.

By default, maxView Storage Manager uses all available disk space to maximize the capacity of a new logical drive.

To create a logical drive on an existing array:

1. In the Enterprise View, select a system, then select a controller on that system.

2. On the ribbon, in the Logical Device group, click Create Logical Device.

3. When the wizard opens, select On Existing Array, then click Next.
4. Select the array on which to create the logical drive, then click **Next**.

5. Select a RAID level for the logical drive, then click **Next**.
See Selecting the Best RAID Level on page 118 for more information about RAID levels.

6. (Optional) In the RAID Attributes panel, customize the logical drive settings.

You can:

- Enter a name for the logical drive. Names can include any combination of letters, numbers, and spaces.
- Set the size and unit of measure for the logical drive. (By default, a new logical drive uses all available disk space.)
- Change the stripe size—the amount of data, in bytes, written per disk in the logical drive. (The default stripe size usually provides the best performance.)
- Set the initialization method to Default or Build. The initialization method determines how the logical drive is prepared for reading and writing, and how long initialization will take:
 - Default—Initializes parity blocks in the background while the logical drive is available for access by the operating system. A lower RAID level results in faster parity initialization.
• **Build**—Overwrites both the data and parity blocks in the foreground. The logical drive remains invisible and unavailable to the operating system until the parity initialization process completes. All parity groups are initialized in parallel, but initialization is faster for single parity groups (RAID 5). RAID level does not affect performance during Build initialization.

Note: Not all initialization methods are available for all RAID levels.

7. Click **Next**, then review the array and logical drive settings.

This example shows a RAID 5 logical drive ready to be created on Array A.

8. Click **Finish**.

maxView Storage Manager builds the logical drive on the array. Use the Event Log and Task Log to track build progress.

9. If you have other disk drives or available disk space and want to create more logical drives on an existing array, repeat Steps [2]-[8].

10. Repeat Steps [1]-[9] for each controller in your storage space.

11. Partition and format your logical drives. See **Partitioning and Formatting Your Logical Drives** on page 45.

Partitioning and Formatting Your Logical Drives

The logical drives you create appear as physical disk drives on your operating system. You **must** partition and format these logical drives before you can use them to store data.

Note: Logical drives that have not been partitioned and formatted cannot be used to store data.

Refer to your operating system documentation for more information.

Creating Logical Drives on Other Systems in Your Storage Space

If you installed maxView Storage Manager and PMC Adaptec Smart-family controllers on more than one system, continue building your storage space as follows:

• From each individual system, log in to maxView Storage Manager and repeat the steps to create logical drives on new or existing arrays, or
• From your local system (the system you’re working on), log in to all other systems in your storage space as remote systems (see Logging into Remote Systems on page 37), then repeat the steps to create logical drives on new or existing arrays, or
• From your local system, create a server template file and deploy the configuration to the remote systems in your storage space (see Deploying Servers on page 94).
Protecting Your Data

In addition to standard RAID (RAID 0, RAID 1, RAID 5, RAID 10), PMC Adaptec controllers provide additional methods of protecting your data, including dedicated and auto-replace hot spare drives.

A **hot spare** is a disk drive or SSD (Solid State Drive) that automatically replaces any failed drive in a logical drive, and can subsequently be used to rebuild that logical drive. (For more information, see Recovering from a Disk Drive Failure on page 105.)

Dedicated Spare or Auto-Replace Spare?

A **dedicated** hot spare is assigned to one or more arrays. It will protect any redundant logical drive on those arrays.

After using a dedicated hot spare to rebuild a failed logical drive, data is moved back to its original location, using a process called **copyback**, once the controller detects that the failed drive has been replaced. Once the data is copied back, the hot spare becomes available again. You must create an array before you can assign a dedicated hot spare to protect it. To assign a dedicated hot spare, see Assigning a Dedicated Hot Spare on page 47.

An **auto-replace** hot spare is assigned to a specific array. It will protect any redundant logical drive on that array. After using an auto-replace spare to rebuild a failed logical drive, it becomes a permanent part of the array. You must create an array before you can assign an auto-replace hot spare to protect it. To assign an auto-replace hot spare, see Assigning an Auto-Replace Hot Spare on page 49.

Hot Spare Limitations

- You cannot protect a RAID 0 logical drive with a hot spare; hot spares protect only redundant logical drives.
- You cannot create a hot spare from a disk drive that is already part of an array.
- You should select a disk drive that is at least as big as the largest disk drive it might replace.
- You must designate a SAS hot spare drive for an array comprised of SAS disk drives, and a SATA hot spare drive for an array comprised of SATA disk drives.

Assigning a Dedicated Hot Spare

A dedicated hot spare is assigned to one or more arrays. It will protect any redundant logical drive on those arrays.

Note: You must create the array before you can assign a dedicated hot spare to protect it.

To assign a dedicated spare:

1. In the Enterprise View, select a controller, an array on that controller, or a Ready physical drive.
2. On the ribbon, in the Physical Device group, click **Spare Management**.
The Spare Management wizard opens.

3. Select the **Dedicated** spare type, then click **Next**.

4. If you selected a controller or physical drive in the Enterprise view, select the arrays you want to protect with a dedicated spare, then click **Next**.

5. If you selected a controller or array in the Enterprise view, select the physical drive(s) you want to dedicate as hot spares, then click **Next**. (See **Hot Spare Limitations** on page 47 for help selecting drives.)
6. Review the summary of dedicated spares and protected arrays, then click **Finish**.

Assigning an Auto-Replace Hot Spare

An auto-replace hot spare is assigned to a specific array. After using an auto-replace spare to rebuild a failed logical drive, it becomes a permanent part of the array.

To assign an auto-replace hot spare to an array:

1. In the Enterprise View, select a controller or an array on that controller.

 Note: The Auto-Replace option is always available when you select an array on a controller. However, when you select the controller itself, the option is available only if one or more auto-replace spares already exist. Otherwise, you can just assign Dedicated spares in the wizard.

2. On the ribbon, in the Physical Device group, click **Spare Management**.

 The Spare Management wizard opens.

3. Select the **Auto-Replace** spare type, then click **Next**.
4. If you selected a controller in the Enterprise view, select the array you want to protect with an auto-replace spare, then click **Next**.

5. Select the physical drive(s) you want to assign as auto-replace hot spares, then click **Next**. (See **Hot Spare Limitations** on page 47 for help selecting drives.)
6. Review the summary of auto-replace spares and protected arrays, then click **Finish**.

Removing a Hot Spare

You can remove a dedicated or auto-replace hot spare from an array. Removing the last hot spare from an array returns the drive to the Ready state. You may want to remove a hot spare to:

- Make disk drive space available for another array or logical drive.
- Convert an auto-replace hot spare into a dedicated hot spare.
- Remove the ‘hot spare’ designation from a drive that you no longer want to use as a spare.

To remove a hot spare:

1. In the Enterprise View, select an array or an existing hot spare drive.
2. On the ribbon, in the Physical Device group, click **Spare Management**.

The Spare Management wizard opens.

3. Select **Un-Assgin**, then click **Next**. (Un-Assgin is preselected for an existing hot spare.)
4. If you selected a hot spare in the Enterprise view, select the array(s) from which to remove the spare, then click Next.

5. If you selected an array in the Enterprise view, select the spare(s) to remove from the array, then click Next.
6. Review the summary of affected hot spares and arrays, then click Finish.
 If the spare protects only one array, it is deleted and the drive becomes available for other uses in your storage space. If the spare protects more than one array, it is removed from the selected array(s) but continues to protect the other arrays to which it is assigned.

Setting the Spare Activation Mode

The spare activation mode determines when a hot spare is used to rebuild a failed logical drive. You can choose to activate a spare when:

- A data drive fails; this is the default mode.
- A data drive reports a predictive failure (SMART) status.

In normal operations, the firmware starts rebuilding a failed logical drive with a spare only when a data drive fails. With the predictive failure activation mode, rebuilding can begin before the drive fails, reducing the likelihood of data loss.

The spare activation mode applies to all arrays on a controller.

To set the spare activation mode:

1. In the Enterprise View, select a controller.
2. On the ribbon, in the Controller group, click Set Properties.

 ![Set Properties Controller]

 The Set Properties window opens.

3. Click the Data Protection tab.
4. From the Spare Activation Mode drop-down list, select Failure (default) or Predictive, then click OK.
Modifying Your Storage Space
This section provides additional scenarios for creating and modifying arrays and logical drives. It explains how to check your logical drives for bad or inconsistent data; optimize controller and logical drive performance; move arrays and logical drives; and perform advanced operations, such as creating a split mirror backup array.

Understanding Arrays and Logical Drives

A logical drive is a group of physical disk drives that appears to your operating system as a single drive that can be used to store data.

The group of physical drives containing the logical drive is called a drive array, or just array. Because all the physical drives in an array are commonly configured into just one logical drive, the term array is often used as a synonym for logical drive. However, an array can contain several logical drives, each of a different size.

You can include the same disk drive in two different logical drives by using just a portion of the space on the disk drive in each, as shown in the following figure.

Disk drive space that has been assigned to a logical drive is called a segment. A segment can include all or just a portion of a disk drive’s space. A disk drive with one segment is part of one logical drive, a disk drive with two segments is part of two logical drives, and so on. When a logical drive is deleted, the segments that comprised it revert to available space (or free segments).

A logical drive can include redundancy, depending on its RAID level. (See Selecting the Best RAID Level on page 118 for more information.)

You can also protect your logical drives by assigning one or more hot spares to them. (See Protecting Your Data on page 47 for more information.)

Creating and Modifying Logical Drives

For basic instructions for creating logical drives, see Building Your Storage Space on page 35.

This section describes additional scenarios for creating logical drives:

- To create a logical drive from different-sized disk drives, see Including Different-sized Disk Drives in a Logical Drive on page 56.
To create a logical drive using available segments of disk drives, see Creating a Logical Drive Using Available Segments on page 57.

Including Different-sized Disk Drives in a Logical Drive

You can combine disk drives of different sizes in the same logical drive. If the logical drive includes redundancy, however, the size of each segment can be no larger than the size of the smallest disk drive. (See Selecting the Best RAID Level on page 118 for more information about redundancy.)

Note: You cannot combine SAS and SATA disk drives within the same array or logical drive.

To create a logical drive with disk drives of different sizes, follow the instructions in Creating a Logical Drive on a New Array on page 38. When the wizard displays the RAID Members panel, select different size drives, as shown in the figure below, then complete the wizard.

When the logical drive is created, check its resources on the Storage Dashboard: it should appear similar to the next figure, where a RAID 5 logical drive includes two disk drives of one size and one of another.
Creating a Logical Drive Using Available Segments

Free segments on a disk drive can be used to create a new logical drive. (Each segment can be used in only one logical drive at a time.)

To create a logical drive using free segments on disk drives, follow the instructions in Creating a Logical Drive on an Existing Array on page 42. When the wizard displays the RAID Members panel, select the disk drives and/or free disk drive segments you want to use in the logical drive, then complete the wizard.

Enabling Background Consistency Check

When background consistency check is enabled, maxView Storage Manager continually and automatically checks your logical drives for bad or inconsistent data, and then fixes any problems. Enabling consistency check ensures that you can recover data if a logical drive fails. The scanning process checks physical drives in fault-tolerant logical drives for bad sectors. It also verifies the consistency of parity data, if applicable. The available modes are High, Disable, Idle. If you select the Idle mode, you must also specify a delay value and parallel scan count.

To enable or disable background consistency check:

1. In the Enterprise View, select a controller.
2. On the ribbon, in the Controller group, click Set Properties.
3. Click the Data Protection tab.
4. In Consistency Check Mode drop-down list, select High, Disabled, or Idle.
5. If you selected the Idle mode, enter the consistency check delay (in seconds) and parallel consistency check count:
• **Consistency Check Delay**—Amount of time the controller must be inactive before the surface scan is started. Enter a value from 0-30. A value of 0 disables the scan.

• **Parallel Consistency Check Count**—Number of logical drives on which the controller will perform the consistency check in parallel.

6. Click **OK**.

Moving a Logical Drive

maxView Storage Manager allows you to move a single logical drive from one array to another array. You can choose the following destinations:

- Move Logical Drive To a New Array
- Move Logical Drive To an Existing Array

If you move the logical drive to a new array, the array is created automatically. If you move the logical drive to an existing array, it must have sufficient space and member disk drives to store the logical drive data and accommodate the RAID level; for example, three drives, minimum, for a RAID 5.

Note: Moving a logical drive can be a time-consuming process. All data in the logical drive is moved onto the new or existing array, and the controller continues to service I/O requests to other logical drives.

To move a logical drive:

1. In the Enterprise View, select a logical drive.

2. On the ribbon, in the Logical Device group, click **Expand/Migrate Logical Device**.

3. When the wizard opens, select **To New Array** or **To Existing Array**, then click **Next**.

4. If you are moving the logical drive to a new array, select the physical drives for the array. Be sure the drive type is the same for all drives (SAS or SATA, not mixed).
Note: The drives must have sufficient capacity to store the logical drive data.

5. If you are moving the logical drive to an existing array, expand the Arrays and Logical Devices list, then select the destination array.

6. Click **Next**, review the summary information, then click **Finish**.

maxView Storage Manager moves the logical drive onto the new or existing array. If you moved the last logical drive on an array, maxView Storage Manager deletes the array and removes it from the Enterprise View.

Moving an Array

You can move an array by replacing its physical drives with drives of the same type or different type. For example, you can replace SAS drives in the array with other SAS drives, or replace SAS drives with SATA drives. You cannot combine drive types in the same array, however. If you choose to replace SAS
drives with SATA drives, for example, all drives in the array must be replaced with SATA drives. The replacement drives must be in the Ready state; that is, not part of any array or assigned as a spare.

Moving an array automatically removes any previously assigned spare drives. Replaced drives in the array are freed and become Ready drives that can be used in other arrays, logical drives, or as spares.

Note: Moving an array can be a time-consuming process. All data in each logical drive is copied to the replacement drives, and the controller continues to service I/O requests to other logical drives.

To move an array:

1. In the Enterprise View, select an array.
2. On the ribbon, in the Array group, click **Modify Array**.

3. When the wizard opens, select an action, then click **Next**:
 - Select **Move Drives** to replace array drives with drives of the same type.
 - Select **Change Drive Type** to replace array drives with drives of a different type.

4. Select one or more drives. For Move Drives, the wizard displays only physical devices of the same type. For Change Drive Type, the wizard displays only physical devices of a different type. The RAID level determines the number of drives you need to select.
Note: The drives must have sufficient capacity to hold all of the logical drives in the source array.

5. Click Next, review the summary information, then click Finish.

Working with Mirrored Arrays

maxView Storage Manager allows you to split a mirrored array and then recombine it. This process entails splitting a RAID 1 or RAID 10 array into two identical new arrays consisting of RAID 0 logical drives. Arrays with other RAID configurations cannot be split.

Creating a Split Mirror Backup

Use this option to split a mirrored array, consisting of one or more RAID 1 or RAID 10 logical drives, into two arrays: a primary array and a backup array, with these characteristics:

- The primary array and backup array will contain identical RAID 0 logical drives.
- The primary array continues to be fully accessible to the operating system.
- The backup array is hidden from the operating system and data on the drive is frozen. **Note:** You can use the backup array to restore the primary array with its original contents. See Re-mirroring, Rolling Back, or Reactivating a Split Mirror Backup on page 62.
- The primary array includes the designation "Split Mirror Set Primary" as the device type.
- The backup array includes the designation "Split Mirror Set Backup" as the device type.

If the array is protected by a spare drive, the drive is unassigned after the split.

To create a split mirror backup:

1. In the Enterprise View, select a mirrored array.
2. On the ribbon, in the Array group, click Split Mirror Backup.

3. When prompted to create the backup array, click OK.
Re-mirroring, Rolling Back, or Reactivating a Split Mirror Backup

When you re-mirror a split mirrored array, you recombine the primary array and backup array into a single array. You can:

- Re-mirror the array and preserve the existing data; the backup array is discarded. This option re-creates the original mirrored array with the current contents of the primary array.
- Re-mirror the array and roll back to the contents of the backup array; existing data is discarded. This option re-creates the mirrored array but restores its original contents from the backup array.

You can also reactivate the split mirror backup. This option makes the backup array fully accessible to the operating system. maxView Storage Manager removes the "Split Mirror Set Backup" designation and re-designates it as a Data Array.

To re-mirror, roll back, or reactivate a split mirror backup:

1. In the Enterprise View, select the Split Mirror Set Primary array; that is, an array with an existing split mirror backup.
 Note: Use the Summary tab on the Storage Dashboard to verify the array type.

2. On the ribbon, in the Array group, click **Remirror/Activate Backup**.

3. When prompted to select a re-mirroring task, choose: Re-mirror array, Re-mirror with roll-back, or Activate Backup.
 Note: PMC recommends that you do not perform a re-mirror with roll back if the logical drive to be rolled back is mounted or in use by the operating system.
4. Click OK.

Healing an Array

You can use the Heal Array operation to replace failed physical drives in the array with healthy physical drives. After replacement, the original array and logical drive numbering is unaffected.

The Heal Array operation is part of the Modify Array wizard (see Moving an Array on page 59). It is available in the wizard only if:

- The array has at least one failed drive.
- The array is not rebuilding to a spare.
- A sufficient number of Ready physical drives of the same type and correct size are available to replace each failed physical drive in the array.

Note: The correct size is defined as a drive as large as the smallest drive on the array, but no larger than the smallest spare.

For a RAID 0 volume, the heal operation recreates the volume. For other RAID volume types, the heal operation rebuilds the volume.

To heal an array:

1. In the Enterprise View, select an array.
2. On the ribbon, in the Array group, click **Modify Array**.

3. When the wizard opens, select **Heal Array**, then click **Next**.

4. Select one or more drives to replace the failed drives in the array.
Note: The drives must have sufficient capacity to hold all of the logical drives in the array.

5. Click Next, review the summary information, then click Finish.

Changing the Logical Drive Rebuild Priority

The Rebuild Priority setting determines the urgency with which the controller treats an internal command to rebuild a failed logical drive:

- At the low setting, normal system operations take priority over a rebuild.
- At the medium setting, normal system operations and rebuilds get equal priority.
- At the medium high setting, rebuilds get higher priority than normal system operations.
- At the high setting, rebuilds take precedence over all other system operations.

If the logical drive is part of an array with an online spare, rebuilding begins automatically when drive failure occurs. If the array does not have an online spare, rebuilding begins when the failed physical drive is replaced. For more information, see Rebuilding Logical Drives on page 106.

To change the rebuild priority:

1. In the Enterprise View, select a controller.
2. On the ribbon, in the Controller group, click Set Properties.

 The Set Properties window opens.

3. In Rebuild Priority Mode drop-down list, select Low, Medium, Medium High, or High. The Rebuild Priority field is circled in the next figure.
4. Click **OK**.

Renaming a Logical Drive

To change the name of a logical drive:

1. In the Enterprise View, select a controller, then select the logical drive you want to rename.
2. On the ribbon, in the Logical Device group, click **Set Properties**.

 ![Set Properties window](image)

 The Set Properties window opens.

3. In the Logical Device Name field, type the new name, then click **OK**. Names can include any combination of letters, numbers, and spaces.

 maxView Storage Manager updates the logical drive name and displays the new name in the Enterprise View.

Deleting an Array or Logical Drive

When you delete an array or logical drive, it is removed from the Enterprise View and the disk drives or segments in the logical drive(s) become available to use in a new array or logical drive (see **Creating a Logical Drive Using Available Segments** on page 57).

Caution: When you delete an array you lose all data on the logical drive(s) within the array, in addition to the array itself. When you delete a logical drive, you lose all data stored on that logical drive. Be sure you no longer need the data on the array or logical drive before you delete it.

To delete an array or logical drive:

1. In the Enterprise View, select the array or logical drive you want to delete.
2. On the ribbon, in the Array group or Logical Device group (shown below), click **Delete**.
3. When prompted to continue, click **Delete** to delete the array or logical drive.

 Note: If a deleted logical drive is the only logical in the array, the array itself is also deleted.
Maintaining Physical Devices

This section describes how to manage the controllers, disk drives, solid state drives, and enclosures in your storage space.

Viewing Device Properties

Click on any physical device in the Enterprise View then, on the Storage Dashboard, click the Properties tab to view version numbers, status, model numbers, features, and other information about the device.

The properties listed vary, depending on which type of device you select. The figure below shows the properties for a controller. For more information about using the Storage Dashboard to monitor the components in your storage space, see Viewing Component Status in the Storage Dashboard on page 83.

Locating Drives in Your Storage Space

You can blink the LEDs on disk drives and SSDs to identify where they are physically located in your storage space. This table describes how to locate specific devices.
Locating a Disk Drive

To locate a (single) disk drive:

1. In the Enterprise View, select a controller then, in the Physical Devices tree, select a disk drive.
2. On the ribbon, in the Physical Device group, click **Locate**.

 ![Locate Physical Device](image)

 The Locate Physical Device window opens.

3. From the drop-down list, select the timeout period (1 hour, 4 hours, 24 hours).
4. Click the **Locate** button.
 The LED on the disk drive begins to blink.
5. Click **Stop** to stop blinking the drive immediately.
6. Click **Cancel** to close the Locate window.
 The LED continues to blink for the duration of the timeout period.

Locating Physical Disks in an Array or Logical Drive

To locate all physical disks in an array or logical drive:

1. In the Enterprise View, open the Arrays and Logical Devices tree for a controller, then select an array or logical drive.
2. On the ribbon, in the Array group or Logical Device group (shown below), click **Locate**.

 ![Locate Logical Device](image)

 The Locate Logical Device window opens and displays a list of the physical disks associated with the array or logical drive.
3. Select the timeout period (1 hour, 4 hours, 24 hours), then click **Locate**.
The LEDs on the disk drives begin to blink.

4. Click Cancel to close the Locate window.
 The LEDs continue to blink for the duration of the timeout period.

5. Click Stop to stop blinking the drives immediately.

Working with Failed or Failing Disk Drives

This section describes how to use maxView Storage Manager to manage failed or failing disk drives in your storage space.

Replacing Disk Drives in a Logical Drive

You can replace one or more disk drives in a logical drive. You may want to replace a drive to upgrade to larger disk drives, or to make disk drive size uniform across the logical drive.

Caution: If another disk drive in the logical drive fails during rebuild (see Rebuilding Logical Drives on page 106), you may lose data. For help solving disk drive problems, see Recovering from a Disk Drive Failure on page 105.

To replace a disk drive in a logical drive:

1. In the Physical Devices tree in the Enterprise View, find the disk drive you want to replace; note its size and location (for instance Slot 1 in Enclosure 0).
2. Set the drive state to failed. (See Setting a Disk Drive to ‘Failed’ on page 69.)
3. Remove and replace the disk drive with one of equal or greater size.
4. Wait for the logical drive to rebuild. (See Rebuilding Logical Drives on page 106.)
5. Repeat these steps for each disk drive you want to replace.

Setting a Disk Drive to ‘Failed’

Before you can remove a disk drive, you should set it to the Failed state to protect your data. To fail a disk drive (or SSD), use the Force Offline option for physical devices.

You can set a disk drive to the Failed state if:
- The disk drive is not part of a logical drive, or
- The disk drive is part of a redundant, healthy logical drive

Caution: You may lose data or damage your disk drive if you remove a disk drive without first setting it to a failed state.

To set a disk drive to Failed:
1. In the Enterprise View, select a controller then, in the Physical Devices tree, select the drive you want to set to Failed.
2. On the ribbon, in the Physical Devices group, click **Force Offline**.

 ![Physical Device with Force Offline button](image)

 The Force Offline window opens.
3. Click **Force**.

 The drive is taken offline and set to the Failed state.

 Note: If the drive is part of a healthy logical drive, the drive is degraded and a warning message is displayed in the Event Log.

Erasing a Disk Drive

You can use maxView Storage Manager to *securely* erase existing data on any disk drive or SSD in the Ready state. Secure erase completely destroys the data on the drive; the data is completely and irretrievably eradicated.

For newer SATA drives, you can choose to perform a Secure ATA Erase, which implements the secure erase feature at the drive firmware level.

Optionally, you can choose the erase pattern.

To securely erase a disk drive or SSD:

1. In the Enterprise View, select a controller then, in the Physical Devices tree, select the drive you want to erase.
2. On the ribbon, in the Physical Device group, click **Secure Erase**.

 ![Physical Device with Secure Erase button](image)

 The Secure Erase Physical Device window opens.
3. Select the erase type: **Secure Erase** or **ATA Secure Erase**.

 Note: ATA Secure Erase is available only for newer SATA drives.
4. From the drop-down list, select the erase pattern:
 - **Zero** (default)—Initializes all blocks to zero.
 - **Random Zero**—Initializes block to random value then zero.
 - **Random Random Zero**—Initializes block to random value, next block to random value, then zero.
5. Click **Erase** to erase the drive.

Configuring the Global Physical Drive Write Cache Policy

This option allows you to configure the write cache policy for all physical drives on a controller.
Caution: Enabling write caching can improve drive performance. However, a power, device, or system failure, or a dirty shut down may result in data loss or file-system corruption.

To configure the Global Physical Drive Write Cache policy:

1. In the Enterprise View, select a controller.
2. On the ribbon, in the Controller group, click **Set Properties**.

When the Set Properties window opens, click the **Cache** tab.

3. In the Global Physical Devices Write Cache Policy drop-down list, select **Enable All** or **Disable All**.
4. Click **OK**.

Working with Controllers

This section describes how to use maxView Storage Manager to manage the controllers in your storage space:

- To re-scan a controller, see **Rescanning a Controller** on page 71.
- To optimize controller performance, see **Optimizing Controller Performance** on page 71.
- To change the operating mode of connectors on the controller, see **Changing the Connector Operating Mode** on page 73.

Rescanning a Controller

After you connect a disk drive or remove a Ready (non-failed) disk drive from a controller, maxView Storage Manager may not recognize the change until it rescans the controller.

To rescan a controller:

1. In the Enterprise View, select the controller.
2. On the ribbon, in the Controller group, click **Rescan**.

The Rescan window opens.

3. Click the **Rescan** button (on the Rescan window).

 maxView Storage Manager scans all the channels or ports on the controller you selected.
4. When the rescan is finished, click **Cancel** to close the Rescan window.

Optimizing Controller Performance

You can enable the following performance optimizations on a controller to improve I/O throughput and ensure optimal performance of the arrays and logical drives in your storage space.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Queue Depth</td>
<td>Sets the max drive request queue depth for the controller. Valid values are Automatic, 2, 4, 8, 16, and 32.</td>
</tr>
<tr>
<td>Option</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Monitor and Performance Delay</td>
<td>Sets the MNP Analysis delay for the controller, in seconds. Set the value to zero to disable Monitor and Performance Analysis. Default is 60 minutes (3600 seconds).</td>
</tr>
<tr>
<td>Elevator Sort</td>
<td>Sets the behavior of the drive's write Elevator sort algorithm, a scheduling optimization that prioritizes I/O requests such that disk arm and head motion continues in the same direction. Enabling the elevator sort improves seek times and disabling the elevator sort improves throughput.</td>
</tr>
<tr>
<td>Degraded Performance Optimiza-</td>
<td>For degraded RAID 5 logical drives, enabling this setting directs the controller to attempt to improve performance of large read requests by buffering physical drive requests. Disabling this setting forces the controller to read from the same drives multiple times.</td>
</tr>
<tr>
<td></td>
<td>zation</td>
</tr>
<tr>
<td>Latency</td>
<td>Enables Flexible Latency Optimization for HDDs. When latency optimization is enabled, the controller detects high-latency I/O requests and applies a cutoff, or threshold, value, after which it suspends elevator sorting and services the request right away. You can set the latency optimization to low, medium, high, aggressive level 1, or aggressive level 2.</td>
</tr>
</tbody>
</table>

To enable/disable performance optimizations on a controller:

1. In the Enterprise View, select a controller.
2. On the ribbon, in the Controller group, click Set Properties.
3. Enable/disable performance optimizations, as needed.
4. Click OK.
Changing the Connector Operating Mode

Use this option to change the behavior of the connectors on your PMC Adaptec Smart-family controller. The connectors on the controller can operate in three modes:

- **HBA Mode:** exposes physical drives to the operating system
- **RAID Mode:** exposes only RAID volumes to the operating system
- **Mixed Mode:** exposes RAID volumes and physical drives to the operating system

By default, products with RAID support are configured to operate in Mixed Mode. Mode options vary, depending on the configuration of logical and physical devices on the connector. For example, you cannot switch the connector to HBA mode if the connector is already configured with a RAID volume.

A reboot is required for connector mode changes to take effect.

Note: Changing from Mixed Mode or HBA Mode to RAID Mode removes access to the physical drives from the operating system.

To change the connector mode on a controller:

1. In the Enterprise View, select a controller.
2. On the ribbon, in the Controller group, click **Set Properties**.
3. When the Set Properties window opens, click the **Connector** tab.
4. From the drop-down list, change the connector mode for each port to RAID, HBA, or Mixed.
5. Click **OK**.
6. Reboot the server.

Setting the POST Prompt Timeout

Use this option to set the F1/F2 POST (Power On Self Test) prompt timeout for the controller during system boot.

To set the POST prompt timeout:
1. In the Enterprise View, select a controller.
2. On the ribbon, in the Controller group, click **Set Properties**.

 ![Set Properties](image)

 The Set Properties window opens.

3. Drag the slider control to set the timeout value, from 0 to 255 seconds. The default is 15 seconds.
4. Click **OK**.

Working with System Alarms

Warning- or Error-level events on a system trigger an audible alarm, a series of beeps which sound every five minutes (or 300 seconds) until the event is resolved.

The alarm is enabled by default, but can be disabled on any system, if required. You can also change the frequency and duration of the alarm.

 Note: A system alarm is not the same as a controller alarm. For controller alarm information, see **Working with Controllers** on page 71.

To change alarm settings on a system:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click **System Settings**.

 ![System Settings](image)

 The maxView Storage Manager Agent Settings window opens. The alarm settings are circled in the next figure.
3. Modify the alarm settings, as needed.
 You can disable the system alarm by deselecting **Sound Alarm**.

4. Click **OK**.
 The changes take effect immediately.

Updating Controller, Enclosure, and Disk Drive Firmware

Note: This task is recommended for advanced users only.

maxView Storage Manager includes a wizard to help you update the firmware on the controllers, enclosures, and disk drives in your storage space. The wizard updates the firmware for devices of the same type on the local or a remote system.

For example, if your storage space includes disk drives from two different manufactures, you must update the firmware for each manufacturer’s drives separately, by running the wizard twice. Additionally, if you have more than one system in your storage space, you must run the wizard for each system separately.

To update the firmware on the controllers, enclosures, or disk drives in your storage space, review the prerequisites in **Before You Begin** on page 75, then follow one of these sets of instructions:

- Updating the Controller Firmware on page 75
- Updating the Disk Drive Firmware on page 78
- Updating the Enclosure Firmware on page 79

Before You Begin

Before you begin, download the latest firmware images from the Adaptec Web site at www.adaptec.com, or from your vendor’s support site on the World Wide Web. Controller images come in sets of one or more files and have a `.ufi` or `.bin` file extension. Disk drive and enclosure image file names vary by manufacturer.

Updating the Controller Firmware

Use the Firmware Update wizard to update the firmware for one or more controllers of the same type on the local or a remote system.

To update the controller firmware:
1. In the Enterprise View, select a system.

2. On the ribbon, in the System group, click **Firmware Update**.

3. When the wizard opens, select **Controller**, then click **Next**.

4. Click **Choose**, browse the file system for the firmware update file (typically, a `.ufi` or `.bin` file), click **Open** to select the file (the button label may be different on your browser), then click **Upload**.
5. When the file name appears in the Uploaded Firmware File(s) list, click **Next**.

6. Select the controllers you want to update, then click **Next**.

7. Review the update summary, then click **Finish**.

 ![Update Summary](image)

 Caution: Do not power down the controller(s) while the update is in progress!

8. When the update is complete, click **OK**. Restart the server to activate the new firmware image.
Updating the Disk Drive Firmware

Use the Firmware Update wizard to update the firmware for one or more disk drives of the same type on the local or a remote system. The procedure is similar to updating the controller firmware (see Updating the Controller Firmware on page 75).

To update the disk drive firmware:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click Firmware Update.

3. When the wizard opens, select Disk Drive, then click Next.

4. In the Select Files panel, click Choose, browse the file system for the firmware update file, click Open to select the file (the button label may be different on your browser), then click Upload.
5. When the file name appears in the Uploaded Firmware File(s) list, click Next.
6. In the Attributes panel, select the Chunk Size, from 1-n, in kilobytes (KB), then click Next.
7. In the Select Devices panel, select the disk drives you want to update, then click Next.
8. Review the update summary, then click Finish.

 Caution: Do not power down the controller(s) while the update is in progress!

9. When the update is complete, click OK. Restart the server to activate the new firmware image.
Updating the Enclosure Firmware

Use the Firmware Update wizard to update the firmware for one or more enclosures or expanders of the same type on the local or a remote system.

To update the enclosure/expander firmware:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click **Firmware Update**.

3. When the wizard opens, select **Enclosure/Expander**, then click **Next**.

4. In the Select Files panel, click **Choose**, browse the file system for the firmware update file, click **Open** to select the file (the button label may be different on your browser), then click **Upload**.

5. When the file name appears in the Uploaded Firmware File(s) list, click **Next**.

6. Select the **Chunk Size**, from 1-n, in kilobytes (KB).

7. Select the firmware **Upgrade Type**:
 - **Firmware**—update the firmware image on the expander or enclosure
 - **Manufacturer**—update the manufacturing image (BOOT SEEPROM) on the expander or enclosure
 - **CPLD**—update the CPLD image on the expander or enclosure

8. Select the firmware upgrade **Mode**:
 - **Download Microcode Data Only**—transfer microcode to the device using one or more write buffer commands; requires system reset or power cycle to activate.
 - **Download Microcode with Offsets and Activate**—transfer microcode to the device using one or more write buffer commands and activate immediately.
 - **Download Microcode with Offsets, Save and Activate**—transfer microcode to the device using one or more write buffer commands, save to non-volatile storage, then activate.
9. When you are ready to continue, click **Next**.

10. In the Select Devices panel, select the enclosure(s) you want to update, then click **Next**.

11. Review the summary information, then click **Finish**.

 Caution: Do not power down the controller or enclosure(s) while the update is in progress!

12. When the update is complete, click **OK**. Restart the server to activate the new firmware image, as needed.
Monitoring Status and Activity

This section describes how maxView Storage Manager helps you monitor status and activity in your storage space.

Monitoring Options

maxView Storage Manager provides many ways to monitor the status of your storage space:

- **Event Log**—The main window of maxView Storage Manager features an event log that provides at-a-glance status information about activity (or events) occurring in your storage space. All Warning- and Error-level events are also recorded in your operating system’s event log. See Viewing Activity Status in the Event Log on page 81 and Changing an Operating System’s Event Log Setting on page 92.
- **Task Log**—The main window also features a task log that provides status information about the progress of tasks in your storage space, such as the creation of a logical drive. See Viewing Task Status in the Task Log on page 83.
- **Storage Dashboard**—Occupying the largest portion of the main window in maxView Storage Manager, the Storage Dashboard provides complete, at-a-glance, information about the components of your storage space, including status information, physical and logical device properties, resources, and reliability indicators for hard drives and SSDs. See Viewing Component Status in the Storage Dashboard on page 83.
- **Chart View**—Provides a visual representation of free and used space for a system, controller, or your entire storage space. See Viewing Storage Space Usage in Chart View on page 86.
- **Notifications**—You can set maxView Storage Manager to email or broadcast status notifications in your choice of format to help you monitor activities in your storage space, such as:
 - Changes in the status of physical devices, such as disk drive failures.
 - Changes on local or remote systems, such as the creation of a hot spare.
 - Changes in temperature in storage enclosures, or that fans or power supplies within an enclosure have failed.
 See Notifying Users by Email About Status and Activity on page 86 and Broadcasting Alerts About Status and Activity on page 91.
- **Audible Alarm**—A series of beeps sounds whenever a serious event occurs on your storage space. See Working with System Alarms on page 74.

Checking Status from the Main Window

You can view status information and messages about the activity occurring in your storage space by looking at the event log, status icons, and task log in the main window of maxView Storage Manager. (You can also view all events for a system in its operating system event log; see Changing an Operating System’s Event Log Setting on page 92.) Using the Storage Dashboard and Chart View, you can also monitor the physical and logical components of your storage space from the main window, including summary information and status, physical and logical device properties and resources, and usage and I/O statistics.

Viewing Activity Status in the Event Log

The Event Log lists activity occurring in your storage space, with the most recent event listed at the top. Status is indicated by icons (see What Do the Event Status Icons Mean? on page 82) in the left-hand column, as shown in the figure below.

You can view events as they occur in the bottom panel of the maxView Storage Manager main window. The main window displays the last 100 events in your storage space. To view more events, filtered by device (a controller, for example), open the Event tab on the Storage Dashboard (see Viewing Component Status in the Storage Dashboard on page 83).
Single-click any event to open the Event Log Detail window to see more information in an easier-to-read format. Use the up and down arrows to view previous or following events.

To make it easier to find a specific event, click on the column heads to sort the events. For example, sorting the events by Severity can help you find specific Error- or Warning-level events quickly.

What Do the Event Status Icons Mean?

maxView Storage Manager indicates event status with icons. This table lists the three categories, or types, of events based on severity.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Status</th>
<th>Examples</th>
</tr>
</thead>
</table>
| ![Information Icon](image) | Information | The local system successfully connected to a remote system.
A logical drive was created.
A hot spare was deleted. |
| ![Warning Icon](image) | Warning | A logical drive is in a degraded state.
A disk drive is being rebuilt.
A controller is not responding to an enclosure. |
| ![Error Icon](image) | Error | A controller has failed.
A logical drive has failed.
A disk drive or hot spare has failed.
An enclosure is overheating.
Multiple fans or power supplies within an enclosure have failed.
An enclosure is not responding. |
Note: All Warning- and Error-level events also cause the audible alarm to sound. See [Working with Controllers](#) on page 71 for more information.

Viewing Task Status in the Task Log

The Task Log shows the status and progress of tasks in your storage space, with the most recent task listed at the top.

Single-click any task to open the Task Log Detail window to see more information in an easier-to-read format.

Viewing Component Status in the Storage Dashboard

The Storage Dashboard provides detailed information about the components of your storage space, including local and remote systems, controllers, arrays, logical drives, enclosures, disk drives and SSDs. Occupying the largest portion of the main window in maxView Storage Manager, the Storage Dashboard organizes component information by category, with a tabs providing one-click access to summary information and status, properties, resources, and usage statistics.

The information on the Storage Dashboard varies, depending on which component is selected in the Enterprise View. The figure below shows the Storage Dashboard for a controller. Tabs provide access to summary information, controller properties, and resources. The Events tab shows filtered events for the selected device (see [Viewing Activity Status in the Event Log](#) on page 81).

Note: For information about Chart View, on the right side of the Storage Dashboard, see [Viewing Storage Space Usage in Chart View](#) on page 86.
The following table lists the categories and types of information provided on the Storage Dashboard for each component in your storage space. All top-level nodes in the Enterprise View (System, Controller, Arrays, Logical Drives, Physical Devices, and so on) include a Summary tab.

<table>
<thead>
<tr>
<th>Component</th>
<th>Categories</th>
<th>Examples</th>
</tr>
</thead>
</table>
| System | Summary, Properties | System name and IP address
Operating system
Number and type of controllers
Alarm status (see Working with System Alarms on page 74)
Web Server settings
SMTP settings |
| Controller | Summary, Properties, Resources, Connectors | Model, key features, driver and firmware version, controller mode, and status
Number of physical drives, arrays, logical drives, and status
Connector functional mode
Performance optimizations and other settings
Physical drive assignments by logical device (see Revealing More Device Information on page 32) |
| Arrays | Summary, Resources | Total size and unused size
Spare rebuild mode
Logical drive RAID level, size, status |
| Logical drives | Summary, Resources | Raid level, size, and status
Member drives and sizes |
| Enclosure | Summary | Enclosure type, vendor, model and status
Fan, power supply, and temperature status (see Monitoring Enclosure Status on page 85)
Slot allocation and usage |
| Hard drives and SSDs | Summary, Resources, SMART Statistics | Drive type (hard drive, SSD), vendor, and model
Drive state (Ready, Optimal, Hot Spare)
Channel number and device ID
Transfer speed
Drive segment allocation
SMART statistics (see Viewing SMART Statistics on page 85) |
Monitoring Enclosure Status

If your storage space includes an enclosure with an enclosure management device, such as a SCSI Accessed Fault-Tolerant Enclosure (SAF-TE) processor, maxView Storage Manager displays temperature, fan, and power module status on the Storage Dashboard, as shown in the figure below.

<table>
<thead>
<tr>
<th>Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fan Status</td>
</tr>
<tr>
<td>Fan 1</td>
</tr>
<tr>
<td>Fan 2</td>
</tr>
<tr>
<td>Fan 3</td>
</tr>
<tr>
<td>Fan 4</td>
</tr>
<tr>
<td>Fan 5</td>
</tr>
<tr>
<td>Fan 6</td>
</tr>
<tr>
<td>Power Supplies Status</td>
</tr>
<tr>
<td>Power Supply 1</td>
</tr>
<tr>
<td>Power Supply 2</td>
</tr>
<tr>
<td>Temperature Sensor Status</td>
</tr>
<tr>
<td>Sensor 1</td>
</tr>
<tr>
<td>Sensor 2</td>
</tr>
</tbody>
</table>

Viewing SMART Statistics

You can use the Storage Dashboard to view various indicators of reliability for the SATA hard drives and SSDs in your storage space. maxView Storage Manager displays SMART statistics for the drives using Self-Monitoring, Analysis and Reporting Technology available on most contemporary hard drives and non-spinning storage devices. You can use this information to verify the health of your hard drives and SSDs and to predict drive failures.

To view the SMART statistics for a hard drive or SSD, select the drive in the Enterprise View, then click the SMART tab on the Storage Dashboard. For SSDs, the statistics include wear-level and longevity indicators, as shown in next figure. Refer to your drive vendor’s data sheet for a description of individual report items.
SSD wear-level and longevity indicators

<table>
<thead>
<tr>
<th>ID</th>
<th>Name</th>
<th>Nor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>Temperature</td>
<td>160</td>
</tr>
<tr>
<td>0x02</td>
<td>Read/Write Error Detection Code Errors</td>
<td>36</td>
</tr>
<tr>
<td>0x03</td>
<td>Unknown Attribute</td>
<td>120</td>
</tr>
<tr>
<td>0x04</td>
<td>Unknown Attribute</td>
<td>160</td>
</tr>
<tr>
<td>0x09</td>
<td>Unknown Attribute</td>
<td>120</td>
</tr>
<tr>
<td>0x0C</td>
<td>Unknown Attribute</td>
<td>120</td>
</tr>
<tr>
<td>0x0E</td>
<td>Low Drive Status</td>
<td>160</td>
</tr>
<tr>
<td>0x0F</td>
<td>SED Unl. Dept</td>
<td>160</td>
</tr>
<tr>
<td>0x08</td>
<td>Unknown Attribute</td>
<td>0</td>
</tr>
<tr>
<td>0x0A</td>
<td>Unknown Attribute</td>
<td>0</td>
</tr>
</tbody>
</table>

Viewing Storage Space Usage in Chart View

Chart View provides a visual representation of the free and used space for a system, controller, array, or your entire storage space (all systems and controllers). Located on the right side of the Storage Dashboard in the maxView main window, Chart View displays a pie chart of storage space usage.

To view storage space usage in Chart View, simply select a component in the Enterprise View (a system, for instance); the chart view is updated immediately.

Notifying Users by Email About Status and Activity

You can set up maxView Storage Manager to send email messages (or notifications) to one or more email addresses when an event occurs on a system, such as the creation of a logical drive or the failure of a disk drive. Email notifications can help you monitor activity on your entire storage space from any.
location, and are especially useful in storage spaces that include multiple systems running the maxView Storage Manager Agent only.

Only the users you specify receive email notifications. You can specify which types of events generate email messages (Error, Informational, Warning). You can also specify if you want to be notified instantly when an event occurs to ensure that urgent issues receive immediate attention from the right people. Alternatively, you can specify that you want events “coalesced” and receive only one email message for each event type.

Follow the instructions in this section to:

- Set up email notifications (see Setting Up Email Notifications on page 87).
- Send a test email (see Sending a Test Message on page 89).
- Modify or remove an email recipient (see Modifying or Removing an Email Recipient on page 90).
- Modify email server settings (see Modifying Email Server Settings on page 91).
- Disable email notifications (see Disabling Email Notifications on page 91)

Setting Up Email Notifications

This section describes how to set up email notifications for one system. If you want to monitor multiple systems by email, you must complete the tasks in this section for each one separately.

Before you begin, note this information:

- The address of your Simple Mail Transfer Protocol (SMTP) server (host name and domain, or TCP/IP address)
- The email address of each person who will receive email notifications

To set up email notifications:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click **System Settings**.
3. When the System settings window opens, click the **SMTP** tab.
4. Select **Enable Email Notifications**.
5. Enter the IP address of your SMTP server and the server's port number (or use the default port). Then, enter the “From” address that you want to appear in your email notifications. If an email recipient will be replying to email notifications, be sure that the “From” address belongs to a system that is actively monitored.
6. If authentication is enabled on your SMTP server (that is, the server requires authentication details before it will send messages to users), select **Use Secure Mail Server**, then enter the SMTP server’s login credentials (username/password) in the space provided.

7. On the System settings window, click the **Email** tab. The Email Notifications Manager opens.

8. Click **Add Email**. When the Add Email window opens, enter the recipient's email address, select the level of events that will trigger an email notification for that recipient (Error, Error/Warning, Error/Warning/Informational), select the notification type—Instant or Coalesced—then click **Add**. (For more information about event levels, see **What Do the Event Status Icons Mean?** on page 82.)
Repeat this step to add more email recipients. Each recipient appears in the Email Notifications Manager, as shown below:

9. When you’re done adding email recipients, click OK. The email recipients and your SMTP server settings are saved.
10. Repeat the steps in this section for each system you want to monitor with email notifications, then continue by sending test messages to all recipients (see Sending a Test Message on page 89).

Sending a Test Message

To ensure that an email recipient is receiving event notifications, you can send them a test message.

To send a test message:

1. In the Enterprise View, select the system you want.
2. On the ribbon, in the System group, click **System Settings**.
3. When the System settings window opens, click the **Email** tab. The Email Notifications Manager opens.

4. Select one or more email addresses to send a test message to. To select all addresses, click the check box at the top of the list, as shown in the figure below.

5. Click **Send Test Email**. If the test is successful, the email recipient(s) receive the test message. If the test fails:
 - Ensure that the recipient's email address is correct. (See **Modifying or Removing an Email Recipient** on page 90.)
 - Ensure that your SMTP server address is correct. (See **Modifying Email Server Settings** on page 91.)
 - Try sending the test message again.

Modifying or Removing an Email Recipient

This section describes how to modify a recipient's email address, change the types of event notifications the recipient receives, or stop sending email notifications to a recipient from a selected system.

To modify recipient information or to stop sending email notifications to a recipient:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click **System Settings**.

3. When the System settings window opens, click the **Email** tab. The Email Notifications Manager opens.

4. Select the email recipient you want to modify or remove, then:
 - Click **Modify Email**, change the recipient information, as needed, then click **Modify** to save your changes.
Or,
 • Click Delete Email to remove the recipient from the notification list.
 The changes become effective immediately.

5. Click OK to close the Email Notifications Manager.

Modifying Email Server Settings

You can modify these email server settings, if required:
 • Address and port of your SMTP server
 • ‘From’ address that will appear in email notifications
 • Secure server login credentials

To modify email server settings:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click System Settings.

3. When the System settings window opens, click the SMTP tab.
4. Edit the SMTP server settings as required, then click OK to save your changes.

Disabling Email Notifications

This section describes how to disable email notifications on a selected system.

 Note: If you disable email notifications, events continue to be generated but email messages won’t be sent.

To disable email notifications:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click System Settings.

3. When the System settings window opens, click the SMTP tab.
4. Clear the Enable Email Notifications check box.
5. Click OK to save your changes.

Broadcasting Alerts About Status and Activity

You can set maxView Storage Manager to send status alerts about a specified system to all users who are logged into your storage space. You might want to do this if your storage space isn’t managed by a dedicated person, or if that particular system is off-site or not connected to a monitor. Event alerts signal everyone working on the storage space that a system requires technical assistance.
When you set maxView Storage Manager to broadcast event alerts, all logged-in users receive messages about all types of events. In Windows, these alerts appear as pop-up messages; in all other operating systems, these alerts appear as console messages.

Note: Event alerts are independent from email notifications (see Notifying Users by Email About Status and Activity on page 86).

To enable event alerts:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click **System Settings**.

 ![System Settings Button](image)

 The Agent Settings window for that system opens.

3. Click **Broadcast Events to Logged-In Users**, then click **OK**.
4. Restart maxView Storage Manager to apply the change.

Changing an Operating System's Event Log Setting

In addition to the maxView Storage Manager event log, all Warning- and Error-level events on a system are recorded in its operating system event log. You can select the type of events that are recorded, or you can disable operating system event logging.

To change or disable operating system event logging on a system:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click **System Settings**.

 ![System Settings Button](image)

 The Agent Settings window opens.

3. In the **Save Events to OS Log** drop-down list, select the type of events that you want to log, then click **OK**.
4. Restart maxView Storage Manager to apply the new setting.
Managing Your Storage Space

This section describes the advanced features in maxView Storage Manager that help you manage your storage space. You can:

- Deploy servers with a server template file
- Manage remote systems and auto-discovery tasks with the Remote System wizard
- Clear a controller configuration
- Use a custom base port for the maxView Storage Manager Agent
- Change the Web Server port
- Grant Standard users Admin Privilege

Deploying Servers

maxView Storage Manager helps you deploy servers in your storage space without configuring each server manually. You can select an optimally configured server in your storage space, save the controller configuration to a server template file, then duplicate the configuration on servers throughout your network.

The basic procedure works like this:

1. Choose the system you want to use as the model for other servers in your storage space.
2. Save the configuration to a server template file for each controller on that system.
3. Log in to each remote system in your storage space and restore the controller(s) from the server template file(s).

The following sections provide details on each of these steps.

Creating a Server Template File

This procedure saves the configuration of a controller that you want to use as a model for other servers in your storage space. It creates a server template file in XML format, which defines the controller type, operational settings, physical drive size, logical drive size, RAID level, and more. The default name of the server template file is ControllerConf.xml.

To create a server template file:

1. In the Enterprise View, select a system, then select a controller on that system.
2. On the ribbon, in the Controller group, click Manage Configuration.

The Manage Configuration wizard opens.

3. Select Save Configuration, then click Next.
4. Review the Summary information, then click Finish.

5. When the File Download window opens, click Save File, then click OK.

 Note: The procedure for downloading and saving the template file may vary, depending on the Web browser.

6. Continue with Duplicating the Server Template on page 95 to deploy the same controller configuration on multiple systems in your storage space.

Duplicating the Server Template

When you are ready to duplicate the server template on other systems in your storage space, you can restore the controller(s) on those systems from the server template file.

Keep in mind that:

- The server template file (default, ControllerConf.xml) is editable. For example, you may need to change the disk drive capacity or logical drive size to accommodate the differences on each machine.
- Drives from the same vendor with slightly different capacities (147GB vs 150GB, for instance) are considered interchangeable. If the logical drive capacity changes as a result of the size difference, it is scaled accordingly. For example, if the new drives have 4% more capacity due to vendor or model changes, then all logical drives are increased in size by 4%.

To duplicate the server template on another system:

1. In the Enterprise View, select a system, then select a controller on that system.
2. On the ribbon, in the Controller group, click Manage Configuration.

 ![Manage Configuration](image)

 The Manage Configuration wizard opens.

3. Select Restore Configuration, then click Next.
4. In the Configuration File panel, click **Choose**, navigate the file system to your server template file, then click **Open**. When the file name appears in the "selected file" area (circled in blue in figure below), click **Upload**, wait for the upload to complete, then click **Next**.

5. In the Restore Options panel, choose a Force option if the new controller does not support all of the features of the template controller, or if the drive capacity on the new system does not match the configuration in the server template file. The default is Force None. You can choose to:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Force All</td>
<td>To force deployment of all features</td>
</tr>
<tr>
<td>Force Size</td>
<td>To force deployment of just the logical drives</td>
</tr>
</tbody>
</table>
6. To apply the configuration based on SlotID rather than DeviceID, click the **Slot ID** check box.

7. Click **Next**, review the summary information, then click **Finish**.

 maxView Storage Manager duplicates the controller configuration on the new controller.

8. Repeat these steps for each controller on the server. Choose a different server template file in Step [4], as needed.

Managing Remote Systems

maxView Storage Manager has a wizard to help you manage the remote systems in your storage space. The wizard simplifies the process of connecting to remote systems from the local system and adding them to the Enterprise View.

When you start maxView Storage Manager, an “auto-discovery” task runs in the background, continuously searching your network for systems running the maxView Storage Manager Agent. The wizard presents a list of discovered systems (see figure below). You can select systems to add to the Enterprise View when you start maxView Storage Manager; add systems manually if they are not discovered automatically; and remove systems that you no longer want to manage.
Adding Remote Systems with the Wizard

For basic instructions for adding remote systems with the wizard, see *Logging into Remote Systems from the Local System* on page 37. Once you add a system in the wizard, it automatically appears in the Enterprise View each time you start maxView Storage Manager. You can work with a remote system’s controllers, disk drives, and logical drives as if they were part of your local system.

Note: The wizard adds all selected systems to the Enterprise View even if login fails on some systems. For those systems, try running the wizard again with different login credentials.

Manually Adding a Remote System

You can add a remote system manually if auto-discovery fails to find the system on your network.

To manually add a remote system:

1. On the ribbon, in the Home group, click **Add System**.

2. When the Add System window opens, click **System Not Present**. The Add System Manually window opens.

3. Enter the system name and login credentials in the space provided, then click **Add**.
The window closes and the system appears in the discovered systems list in the Add System window.

4. Select the system, then click **Add**.

maxView Storage Manager connects to the remote system and adds it to the Enterprise View.

Removing a Remote System

If you no longer want to manage a remote system, you can remove it from the Enterprise View.

Note: Removing a remote system from the Enterprise View does not take it off-line.

To remove a remote system:

1. On the ribbon, in the Home group, click **Delete System**.

The Delete System window opens.

2. Select the system(s) you want to remove. To select all systems in the list, click the checkbox at the top of the window.
3. Click **Delete**.
 maxView Storage Manager removes the remote system(s) from the Enterprise View.

Changing the Auto-Discovery Settings

Auto-discovery, in maxView Storage Manager, is enabled by default. The auto-discovery task runs in the background each time maxView Storage Manager is started. You can disable auto-discovery if desired, and configure the auto-discovery settings described below.

To change the auto-discovery settings on a system:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click **System Settings**.

 The maxView Storage Manager Agent Settings window opens for that system. The auto-discovery settings appear at the bottom:

 3. To **enable/disable auto-discovery**, select **Enable Auto Discovery**. (This option toggles between enabled and disabled.)

 4. Update the auto-discovery settings, as needed:
 - In the **Auto Discovery Base Port** field, enter the port number for the auto-discovery task. You can use any available port for auto-discovery. The default port is 34570. If you change the port, you must restart the maxView Storage Manager Agent for the change to take effect.
 - In the **Auto Discovery Interval** field, enter the number of seconds between each auto-discovery check. This number determines how often maxView Storage Manager checks for changes in remote system resources. The default is 360 seconds.

5. Click **OK** to save the changes.
Clearing the Controller Configuration

You can clear the configuration of a controller to accommodate changes in your storage space. For example, you may want to clear a controller if you upgraded your hardware or if you plan to move the controller to another machine. Clearing the configuration destroys the controller meta-data, including array and logical device information, partition information, and so on. Once you clear the controller configuration, your online data is no longer accessible.

Caution: When you clear a controller configuration, you lose all data stored on that controller. Be sure you no longer need the data on the controller before proceeding.

To clear the controller configuration:

1. In the Enterprise View, select a system, then select a controller on that system.
2. On the ribbon, in the Controller group, click **Manage Configuration**.

 ![Manage Configuration](image)

 The Manage Configuration wizard opens.

3. Select **Clear Configuration**, then click **Next**.

 ![Manage Configuration Wizard](image)

4. Review the Summary information, then click **Finish**.

Changing the Agent Base Port Setting

You can change the base port setting for the maxView Storage Manager Agent, if needed, to accommodate changes in your network or IT requirements. The Agent can use any open port for communication. The default port is 34571. If you change the port, you must restart the maxView Storage Manager Agent for the change to take effect.

To change the Agent base port setting:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click **System Settings**.
The Agent Settings window opens. In the figure below, the base port setting is circled in blue.

3. Enter the new base port, then click **Apply**.
4. Restart the Agent.

Changing the Web Server Port

You can change the port used by the maxView Storage Manager Web Server, if needed, to accommodate changes in your network or IT requirements. The Web Server can use any open port for communication. The default port is 8443. If you change the port, you must restart maxView Storage Manager for the change to take effect.

To change the Web Server port:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click **System Settings**.

When the System Settings window opens, click the **Web Server** tab.
3. Enter the new Web Server port. Optionally, click **Secured Protocol** to enable/disable secure communication over https.

4. Click **Apply**.

5. Restart maxView Storage Manager.

Granting Standard Users Admin Privilege

Normally, Standard users have restricted access to your storage space, with limited ability to perform non-destructive operations in maxView Storage Manager (see *Working in maxView Storage Manager* on page 27). You can grant Standard users Admin Privilege to accommodate changes in your system policies or IT requirements.

To grant Admin privilege to Standard users:

1. In the Enterprise View, select a system.
2. On the ribbon, in the System group, click **System Settings**.

 ![System Settings](image)

 The Agent Settings window opens.

3. Click the **Allow Standard User as Admin** check box, then click **Apply**.

4. Restart the Agent.
11 Solving Problems

This section describes how to troubleshoot the components in your storage space.

General Troubleshooting Tips

If you experience problems installing or using maxView Storage Manager, try these troubleshooting tips first:

- Ensure that all managed systems are powered on and that you are logged in to any remote systems that you want to manage. (See Logging into Remote Systems from the Local System on page 37 for more information.)
- Check all cable connections.
- Try uninstalling and reinstalling maxView Storage Manager.
- Check the Release Notes for compatibility issues and known problems.

Identifying a Failed or Failing Component

When you receive notice of a Warning- or Error-level event, use maxView Storage Manager’s rapid fault isolation feature to quickly identify the source of the problem.

For instance, in this example, a disk drive has failed. To find the failed disk drive, expand the tree in the Enterprise View, look for the orange and red warning and error icons, then continue tracing the problem to its source.
Recovering from a Disk Drive Failure

This section describes how to recover when a disk drive or SSD fails:

- If the logical drive is protected by a hot spare, see Failed Disk Drive Protected by a Hot Spare on page 105.
- If the logical drive is not protected by a hot spare, see Failed Disk Drive Not Protected by a Hot Spare on page 105.
- If there is a disk drive failure in more than one logical drive simultaneously, see Failure in Multiple Logical Drives Simultaneously on page 105.
- If it is a RAID 0 logical drive, see Disk Drive Failure in a RAID 0 Logical Drive on page 106.
- If multiple disk drives fail within the same logical drive, see Forcing a Logical Drive with Multiple Drive Failures Back Online on page 106.

Failed Disk Drive Protected by a Hot Spare

If a disk drive in a logical drive fails and that logical drive is protected by a hot spare, the hot spare is automatically incorporated into the logical drive and takes over for the failed drive.

For example, if a disk drive fails in a RAID 5 logical drive, the logical drive is automatically rebuilt, with its data reconstructed using the hot spare in place of the failed drive. You can access the logical drive while it’s rebuilding.

To recover from the failure:

1. Remove and replace the failed disk drive, following the manufacturer's instructions.
2. If the logical drive is protected with a dedicated hot spare, data is moved back to its original location once the controller detects that the failed drive has been replaced. Once the data is copied back, the hot spare becomes available to protect other logical drives. No further action is necessary.
 - If the logical drive is protected with an auto-replace hot spare, the spare becomes a permanent part of the array. You must designate a new hot spare to protect the logical drive(s) on that array. See Protecting Your Data on page 47 for more information about managing spares.

Failed Disk Drive Not Protected by a Hot Spare

If a disk drive in a logical drive fails when the logical drive is not protected by a hot spare, remove and replace the failed disk drive. The controller detects the new disk drive and begins to rebuild it. You can access the logical drive while it’s rebuilding.

For example, when one of the disk drives fails in a RAID 1 logical drive, the logical drive is not automatically rebuilt. The failed disk drive must be removed and replaced before the logical drive can be rebuilt.

If the controller fails to rebuild the logical drive, check that the cables, disk drives, and controllers are properly installed and connected. Then, if necessary, follow the instructions in Rebuilding Logical Drives on page 106.

Failure in Multiple Logical Drives Simultaneously

If a disk drive fails in more than one logical drive at the same time (one failure per logical drive), and the logical drives have hot spares protecting them, the controller rebuilds the logical drives with these limitations:

- A hot spare must be of equal or greater size than the failed disk drive it’s replacing.
- Failed disk drives are replaced with hot spares in the order in which they failed. (The logical drive that includes the disk drive that failed first is rebuilt first, assuming an appropriate hot spare is available—see the previous bullet.)

 Note: If the number of disk drive failures exceeds the number of hot spares, see Failed Disk Drive Not Protected by a Hot Spare on page 105.
Disk Drive Failure in a RAID 0 Logical Drive

Because RAID 0 volumes do not include redundancy, if a disk drive fails in a RAID 0 logical drive, the data cannot be recovered.

Correct the cause of the failure or replace the failed disk drives. Then, restore your data from backup, if available.

Forcing a Logical Drive with Multiple Drive Failures Back Online

If multiple disk drives fail in the same logical drive, you may be able to recover the data by forcing the logical drive back online. For instance, if two drives fail in a RAID 5, forcing it online may allow you to access the data, depending on which disk drives failed.

Caution: This procedure is not guaranteed to successfully recover your logical drive. The surest way to recover your data is to restore the failed logical drive from backup.

To force a logical drive online:

1. In the Enterprise view, select the failed logical drive (see Identifying a Failed or Failing Component on page 104).
2. On the ribbon, in the Logical Device group, click Force Online.
3. Click Force, then click OK.

Rebuilding Logical Drives

A hot-swap rebuild occurs when a controller detects that a failed disk drive in a logical drive has been removed and then reinserted.

Note: You can use the Heal Array operation as an alternative to a hot-swap rebuild if you have a sufficient number of Ready physical drives of the same type in your storage space. See Healing an Array on page 63.

To start a hot-swap rebuild:

1. Following manufacturer’s instructions, gently pull the failed disk drive from the server without fully removing it, then wait for it to spin down fully before continuing.
2. If there is nothing wrong with the disk drive, reinstall it, following manufacturer’s instructions.
 If necessary, replace the failed disk drive with a new disk drive of equal or larger size.
3. The controller detects the reinserted (or new) disk drive and begins to rebuild the logical drive.

Creating a Support Archive File

Your support representative might ask you to create a support archive file to help diagnose a problem with your system. Saved information includes device logs, drive logs, event logs, error logs, controller logs, history logs, and SMART statistics.

To create the support archive file:

1. In the Enterprise View, select the system on which the problem is occurring. (Look for the orange or red error icons in the Enterprise View.)
2. On the ribbon, in the System group, click Archive Management.
The Archive Management window opens.

3. Select the logs you want to save.
4. Click **Save**.
5. When the File Download window opens, click **OK**.
6. In the Archive Management window, click **Clear All Logs**, or **Cancel** to exit.
A Silent Installation on Windows and Linux

This appendix describes how to complete a silent installation of maxView Storage Manager on Windows and Linux systems. A silent installation uses command line parameters to complete an installation without messages or user interaction.

Note: Silent installation on Linux is supported on Red Hat, CentOS, and SLES only.

Completing a Silent Installation

This section describes the silent installation process for Windows and Linux.

Windows Silent Installation

To complete a silent installation on Windows:

1. Open a command prompt window, then change to the directory where you downloaded the Windows setup program (see Downloading the Installer Package for details).

2. Run the silent installation from the command line using one of these commands:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Windows 64-bit</td>
<td>setup_asm_x64.exe /s /v"/qn <properties>"</td>
</tr>
<tr>
<td>Windows 32-bit</td>
<td>setup_asm_x86.exe /s /v"/qn <properties>"</td>
</tr>
</tbody>
</table>

 where `<properties>` is one or more of the options listed in Switches, Properties, and Values on page 109. Separate properties with spaces and enclose all properties after `/v` in quotes, with NO leading space. Separate feature names for the ADDLOCAL property with commas.
Switches, Properties, and Values
This section describes the command line options for Windows silent installation. These options are not supported on Linux.

<table>
<thead>
<tr>
<th>Switch or Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/s (required)</td>
<td>Suppress dialog boxes.</td>
</tr>
<tr>
<td>/v (required)</td>
<td>Pass command line parameters to the setup program.</td>
</tr>
<tr>
<td>/qn</td>
<td>Suppress progress bar during installation.</td>
</tr>
<tr>
<td>/qb</td>
<td>Show progress bar during installation.</td>
</tr>
</tbody>
</table>
| /lv* <path> (optional) | Generate verbose installation log at <path>.
 Example: /lv* c:\pmc.log |

INSTALLDIR (optional)
Specifies the installation path. If specified, the installation path must be enclosed in escaped quotation marks.
Example: INSTALLDIR="C:\Program Files\Adaptec\maxView Storage Manager"
 Note: The default installation path is "C:\Program Files\Adaptec\maxView Storage Manager".

ADDLOCAL (optional)
- ALL (default)—Installs the maxView Storage Manager Console (GUI and Agent), and ARCCONF (CLI). If you specify ALL, do not specify any of the following values.
- ARCCONF—Installs the Command Line Interface tool (ARCCONF)
- Agent—Installs the maxView Storage Manager Agent
- Console—Installs the maxView Storage Manager GUI
 Note: Use commas to separate multiple values.

Linux Silent Installation
To complete a silent installation on Red Hat Linux, CentOS, or SLES:

1. Open a shell window, then change to the directory where you downloaded the Linux installer package (see Downloading the Installer Package on page 19 for details).
2. Run the silent installation from the command line using one of these commands:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linux 64-bit</td>
<td>StorMan-X.XX-XXXXX.x86_64.bin --silent</td>
</tr>
<tr>
<td>Linux 32-bit</td>
<td>StorMan-X.XX-XXXXX.i386.bin --silent</td>
</tr>
</tbody>
</table>

 Note: Linux systems also support silent upgrade and silent removal. See Example Command Line Installations on page 110.
Example Command Line Installations

This section shows typical command line installations for Windows and Linux. In the Linux examples, `<x.xx>`-`<xxxxx>`=version-build number.

- Normal Windows Installation:

  ```
  setup_asm_x64.exe /s /v"/qb /lv* c:\pmc.log"
  ```

- Install to Specific Location on Windows:

  ```
  setup_asm_x64.exe /s /v"/qb INSTALLDIR="C:\Program Files\Adaptec\maxView Storage Manager""
  ```

- Install Specific Feature on Windows:

  ```
  setup_asm_x64.exe /s /v"/qb ADDLOCAL=ARCCONF /lv* c:\pmc.log"
  ```

- Normal Linux Installation:

  ```
  ./StorMan-<x.xx>-<xxxxx>.i386.bin --silent
  ```

- Linux Software Upgrade:

  ```
  ./StorMan-<x.xx>-<xxxxx>.i386.bin --upgrade
  ```

- Linux uninstallation (removal):

  ```
  ./StorMan-<x.xx>-<xxxxx>.i386.bin --remove
  ```

Alternative: `rpm -e StorMan`
B Using the maxView Plugin for VMware vSphere Web Client

The maxView plugin for VMware vSphere Web Client is a monitoring tool that lets you explore your storage resources directly from the vSphere Web client, without using maxView Storage Manager as a separate Web GUI. It replicates most of the information on the maxView Storage Manager Dashboard (see The Storage Dashboard on page 31) for the controllers, logical devices, physical devices, enclosures, and systems (hosts) in your storage space, with a vSphere "look and feel" and native navigation.

Note: The maxView plugin is a monitoring tool only. To modify your storage space, such as creating or deleting a logical drive or designating a hot spare, you must use the maxView Storage Manager GUI or CLI (ARCCONF).

Installing the maxView Plugin for vSphere Web Client

Follow the instructions in this section to install the maxView plugin for vSphere Web Client on a Windows x64 system.

Note: Before you begin, ensure that VMware vSphere Web Client is already installed on the Windows host. You need administrator privileges to install the maxView plugin.

1. Download the setup program for the maxView vSphere plugin from the PMC Web site (see Downloading the Installer Package on page 19).

2. Double-click the setup program:

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMware ESXi 5.5</td>
<td>setup_maxView_VWC_Plugin_x64.exe</td>
</tr>
<tr>
<td>client</td>
<td></td>
</tr>
<tr>
<td>VMware ESXi 6.0</td>
<td>setup_maxView_VWC6_Plugin_x64.exe</td>
</tr>
<tr>
<td>client</td>
<td></td>
</tr>
</tbody>
</table>

 The Installation wizard opens.

3. Click Next to begin the installation, accept the terms in the license agreement, then click Next.

4. Enter the following configuration settings for your VMware ESXi server, then click Next:
 a) Hypervisor IP address
 b) Hypervisor user name
 c) Hypervisor password

5. In the Features screen, ensure that maxView VWC Plugin is selected. Optionally, select CLI Tools. Then click Next.
6. Click **Install** to begin the installation.

When the installation is complete, you receive a confirmation message that the plugin is installed.

Starting the maxView Plugin for vSphere Web Client

1. Launch the VMware vSphere Web Client: double-click the vSphere desktop icon, then enter your login credentials.

2. In the Monitoring section on the vSphere Home screen (on the right), click the **maxView** icon; the Controller information screen opens.

3. Alternatively, in the Navigation pane (on the left), click **vCenter**, scroll down to the maxView tree, then select a resource category, such as Controller, Logical Device, Physical Device, or Enclosure, to open the information screen for that item.
Monitoring maxView Resources in vSphere Web Client

For each maxView resource in your storage space—controller, logical device, physical device, and so on—you can view summary information about the resource (or "object") and view its related resources, such as the physical devices in a logical drive, the logical drives on a controller, or the controllers on a host.

For example, the figure below shows the summary information screen for a logical drive, with expandable information fields containing general information about the logical drive, its settings, and resources. (Each expandable field has an arrow next to it.)
Click on the Related Objects tab (next to the Summary tab) to show the physical devices comprising the logical drive, the logical drive’s controller, or a filtered list of events for that logical drive.

Button bar provides quick access to related object information

To drill down further, click on any item in the related objects table, below the button bar. For example, click on a physical device in the table shown below to view summary information for that device, its related objects, and so on.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Status</th>
<th>Total Space (GB)</th>
<th>Used Space (GB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot 0</td>
<td>HDD</td>
<td>Optimal</td>
<td>$21.51</td>
<td>$21.0</td>
</tr>
<tr>
<td>Slot 1</td>
<td>HDD</td>
<td>Optimal</td>
<td>$31.51</td>
<td>$31.0</td>
</tr>
</tbody>
</table>
When you're ready to monitor a different resource, click the resource category in the Navigation pane (on the left). Or click on the History window one or more times (in the upper-left corner of the vSphere client) to return to the vCenter top-level screen; then select a resource in the maxView tree.

Once you return to the top-level screen or choose a resource in the Navigation pane, the procedure for viewing the resource summary and drilling down for more detail is identical for all maxView resources in your storage space.

For more information about the types of information provided on the summary screen and related objects screens for each maxView resource, see Viewing Component Status in the Storage Dashboard on page 83.
Using maxView Storage Manager with HBAs and Non-RAID Mode Controllers

maxView Storage Manager allows you to manage storage resources on Adaptec Host Bus Adapters (HBAs) and RAID controllers operating in HBA mode (see Changing the Connector Operating Mode on page 73). In the Enterprise View, maxView Storage Manager displays HBAs and non-RAID mode controllers in the controller list. Drives on the HBA are surfaced to the OS as Raw devices; that is, storage devices without Adaptec RAID meta-data.

Note: maxView Storage Manager identifies the drive as a Raw device even if it has an OS partition.

With HBAs and non-RAID mode controllers, maxView Storage Manager limits access to features that are not used to configure and maintain RAID volumes (see table below). For example, on the Ribbon, you can use the options in the Controller group to manage your controller, but not options in the Array group or Logical Device group (because HBAs don’t support logical volumes); similarly, you can use options in the System group to upgrade the controller firmware, but not the Spare Management option in the Physical Devices group (because HBAs don’t support spares); and so on.

<table>
<thead>
<tr>
<th>Ribbon</th>
<th>Options for HBAs / Non-RAID Mode Controllers</th>
</tr>
</thead>
<tbody>
<tr>
<td>System Group</td>
<td>Firmware Update</td>
</tr>
<tr>
<td>Controller Group</td>
<td>Rescan, Properties (non-RAID mode controllers only)</td>
</tr>
<tr>
<td>Array Group</td>
<td>None</td>
</tr>
<tr>
<td>Logical Device Group</td>
<td>None</td>
</tr>
<tr>
<td>Physical Devices Group</td>
<td>Force Offline</td>
</tr>
</tbody>
</table>

Just as it does for RAID controllers, the Storage Dashboard provides detailed information about the HBAs and non-RAID mode controllers in your storage space, including the enclosures, disk drives, and SSDs connected to them (for more information about the dashboard, see Viewing Component Status in the Storage Dashboard on page 83).

Tabs on the dashboard provide quick access to summary information, controller properties, resources, and connector configuration. The Events tab shows filtered events for the device (see Viewing Activity Status in the Event Log on page 81).
The following table lists the categories and types of information provided on the Storage Dashboard for HBAs and connected devices.

<table>
<thead>
<tr>
<th>Component</th>
<th>Categories</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller</td>
<td>Summary</td>
<td>Model, WWN, key features, firmware version, controller mode, status, number and type of physical devices.</td>
</tr>
<tr>
<td></td>
<td>Properties</td>
<td>Slot, driver version, bus type and speed, number of ports, settings (mostly disabled)</td>
</tr>
<tr>
<td></td>
<td>Resources</td>
<td>Physical drive assignments by connector, including protocol, state, free and used space</td>
</tr>
<tr>
<td></td>
<td>Connectors</td>
<td>Connector name, number of devices, functional mode</td>
</tr>
<tr>
<td>Physical Devices</td>
<td>Summary</td>
<td>Physical drive assignments by connector, including protocol, state, free and used space</td>
</tr>
<tr>
<td>(node)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connector</td>
<td>Summary</td>
<td>Functional mode, number of devices</td>
</tr>
<tr>
<td>Enclosure</td>
<td>Summary</td>
<td>Enclosure type, vendor, model, ID, channel, firmware version, status and temperature status (see Monitoring Enclosure Status on page 85)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Slot allocation and usage</td>
</tr>
<tr>
<td>Hard drives and SSDs</td>
<td>Summary</td>
<td>Drive type (hard drive, SSD), vendor, interface (SAS/SATA), and model</td>
</tr>
<tr>
<td></td>
<td>Resources</td>
<td>Block size, total size, rotational speed</td>
</tr>
<tr>
<td></td>
<td>SMART</td>
<td>Boot type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Firmware version, WWN, transfer speed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Free space, used space, reserved space</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SMART statistics (see Viewing SMART Statistics on page 85)</td>
</tr>
</tbody>
</table>
Selecting the Best RAID Level

When you create logical drives in maxView Storage Manager, you can assign a RAID level to protect your data.

Each RAID level offers a unique combination of performance and redundancy. RAID levels also vary by the number of disk drives they support.

This section provides a comparison of all the RAID levels supported by maxView Storage Manager, and provides a basic overview of each to help you select the best level of protection for your storage system.

Note: Not all RAID levels are supported by all controllers. See the Release Notes for supported RAID levels on specific controller models.

Comparing RAID Levels

Use this table to select the RAID levels that are most appropriate for the logical drives on your storage space, based on the number of available disk drives and your requirements for performance and reliability.

<table>
<thead>
<tr>
<th>RAID Level</th>
<th>Redundancy</th>
<th>Disk Drive Usage</th>
<th>Read Performance</th>
<th>Write Performance</th>
<th>Built-in Hot Spare</th>
<th>Minimum Disk Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 0</td>
<td>No</td>
<td>100%</td>
<td>***</td>
<td>***</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>RAID 1</td>
<td>Yes</td>
<td>50%</td>
<td>**</td>
<td>**</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>RAID 1E</td>
<td>Yes</td>
<td>50%</td>
<td>**</td>
<td>**</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>RAID 10</td>
<td>Yes</td>
<td>50%</td>
<td>**</td>
<td>**</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>RAID 5</td>
<td>Yes</td>
<td>67 – 94%</td>
<td>***</td>
<td>*</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>RAID 5EE</td>
<td>Yes</td>
<td>50 – 88%</td>
<td>***</td>
<td>*</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>RAID 50</td>
<td>Yes</td>
<td>67 – 94%</td>
<td>***</td>
<td>*</td>
<td>No</td>
<td>6</td>
</tr>
<tr>
<td>RAID 6</td>
<td>Yes</td>
<td>50 – 88%</td>
<td>**</td>
<td>*</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>RAID 60</td>
<td>Yes</td>
<td>50 – 88%</td>
<td>**</td>
<td>*</td>
<td>No</td>
<td>8</td>
</tr>
</tbody>
</table>

Disk drive usage, read performance, and write performance depend on the number of drives in the logical drive. In general, the more drives, the better the performance.

Understanding Drive Segments

A drive segment is a disk drive or portion of a disk drive that is used to create a logical drive. A disk drive can include both RAID segments (segments that are part of a logical drive) and available segments. Each segment can be part of only one logical drive at a time. If a disk drive is not part of any logical drive, the entire disk is an available segment.
Non-redundant Logical Drives (RAID 0)

A logical drive with RAID 0 includes two or more disk drives and provides data striping, where data is distributed evenly across the disk drives in equal-sized sections. However, RAID 0 logical drives do not maintain redundant data, so they offer no data protection.

Compared to an equal-sized group of independent disks, a RAID 0 logical drives provides improved I/O performance.

Drive segment size is limited to the size of the smallest disk drive in the logical drive. For instance, an array with two 250 GB disk drives and two 400 GB disk drives can create a RAID 0 drive segment of 250 GB, for a total of 1000 GB for the volume, as shown in this figure.

RAID 1 Logical Drives

A RAID 1 logical drive is built from two disk drives, where one disk drive is a mirror of the other (the same data is stored on each disk drive). Compared to independent disk drives, RAID 1 logical drives provide improved performance, with up to twice the read rate and an equal write rate of single disks. However, capacity is only 50 percent of independent disk drives.

If the RAID 1 logical drive is built from different-sized disk drives, the free space, drive segment size is the size of the smaller disk drive, as shown in this figure.
RAID 1 Enhanced Logical Drives

A RAID 1 Enhanced (RAID 1E) logical drive—also known as a striped mirror—is similar to a RAID 1 array except that data is both mirrored and striped, and more disk drives can be included. A RAID 1E logical drive can be built from three or more disk drives.

In this example, the large bold numbers represent the striped data, and the smaller, non-bold numbers represent the mirrored data stripes.
RAID 10 Logical Drives

A RAID 10 logical drive is built from two or more equal-sized RAID 1 logical drives. Data in a RAID 10 logical drive is both striped and mirrored. Mirroring provides data protection, and striping improves performance.

Drive segment size is limited to the size of the smallest disk drive in the logical drive. For instance, an array with two 250 GB disk drives and two 400 GB disk drives can create two mirrored drive segments of 250 GB, for a total of 500 GB for the logical drive, as shown in this figure.
RAID 5 Logical Drives

A RAID 5 logical drive is built from a minimum of three disk drives, and uses data striping and parity data to provide redundancy. Parity data provides data protection, and striping improves performance.

Parity data is an error-correcting redundancy that’s used to re-create data if a disk drive fails. In RAID 5 logical drives, parity data (represented by Ps in the next figure) is striped evenly across the disk drives with the stored data.

Drive segment size is limited to the size of the smallest disk drive in the logical drive. For instance, an array with two 250 GB disk drives and two 400 GB disk drives can contain 750 GB of stored data and 250 GB of parity data, as shown in this figure.
RAID 5EE Logical Drives

A RAID 5EE logical drive—also known as a *hot space*—is similar to a RAID 5 array except that it includes a *distributed spare* drive and must be built from a minimum of four disk drives.

Unlike a hot spare, a distributed spare is striped evenly across the disk drives with the stored data and parity data, and can’t be shared with other logical disk drives. A distributed spare improves the speed at which the array is rebuilt following a disk drive failure.

A RAID 5EE logical drive protects your data and increases read and write speeds. However, capacity is reduced by two disk drives’ worth of space, which is for parity data and spare data.

In this figure, S represents the distributed spare, P represents the distributed parity data.
RAID 50 Logical Drive

A RAID 50 logical drive is built from six to forty-eight disk drives configured as two or more RAID 5 arrays, and stripes stored data and parity data across all disk drives in both RAID 5 logical drives. (For more information, see RAID 5 Logical Drives on page 122.)

The parity data provides data protection, and striping improves performance. RAID 50 logical drives also provide high data transfer speeds.

Drive segment size is limited to the size of the smallest disk drive in the logical drive. For example, three 250 GB disk drives and three 400 GB disk drives comprise two equal-sized RAID 5 logical drives with 500 GB of stored data and 250 GB of parity data. The RAID 50 logical drive can therefore contain 1000 GB (2 x 500 GB) of stored data and 500 GB of parity data.

In this figure, P represents the distributed parity data.
RAID 6 Logical Drives

A RAID 6 logical drive—also known as dual drive failure protection—is similar to a RAID 5 logical drive because it uses data striping and parity data to provide redundancy. However, RAID 6 logical drives include two independent sets of parity data instead of one. Both sets of parity data are striped separately across all disk drives in the logical drive.

RAID 6 logical drives provide extra protection for your data because they can recover from two simultaneous disk drive failures. However, the extra parity calculation slows performance (compared to RAID 5 logical drives).

RAID 6 logical drives must be built from at least four disk drives. Maximum stripe size depends on the number of disk drives in the logical drive.

RAID 60 Logical Drives

Similar to a RAID 50 logical drive (see **RAID 50 Logical Drives** on page 124), a RAID 60 logical drive—also known as dual drive failure protection—is built from eight disk drives configured as two or more RAID 6 logical drives, and stripes stored data and two sets of parity data across all disk drives in both RAID 6 logical drives.

Two sets of parity data provide enhanced data protection, and striping improves performance. RAID 60 logical drives also provide high data transfer speeds.
Icons At-a-Glance

The following is a complete list of icons used in maxView Storage Manager. It contains the icons on the ribbon, in the Enterprise View and on tabs and dialog boxes.

See [Overview of the Main Window](#) on page 28 for more information.

Ribbon Home Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Remote system add</td>
</tr>
<tr>
<td></td>
<td>Remote system delete</td>
</tr>
</tbody>
</table>

Ribbon System Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>System settings</td>
</tr>
<tr>
<td></td>
<td>Firmware update</td>
</tr>
<tr>
<td></td>
<td>Save archive file</td>
</tr>
</tbody>
</table>

Ribbon Controller Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controller settings</td>
</tr>
<tr>
<td></td>
<td>Manage configuration (save/restore/clear)</td>
</tr>
<tr>
<td></td>
<td>Controller rescan</td>
</tr>
</tbody>
</table>

Ribbon Array Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Array settings</td>
</tr>
<tr>
<td></td>
<td>Array modify</td>
</tr>
<tr>
<td></td>
<td>Array split/mirror</td>
</tr>
<tr>
<td></td>
<td>Array locate</td>
</tr>
<tr>
<td></td>
<td>Array delete</td>
</tr>
</tbody>
</table>

Ribbon Logical Device Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Logical drive settings</td>
</tr>
</tbody>
</table>

Proprietary and Confidential to PMC-Sierra, Inc., and for its customers internal use.

Document No.: PMC-2153109, Issue 1
Ribbon Physical Device Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Icon]</td>
<td>Physical disk properties</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Assign/unassign physical disk as spare</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Force physical disk offline</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Physical disk secure erase</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Physical disk locate</td>
</tr>
</tbody>
</table>

Enterprise View Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Icon]</td>
<td>Enterprise View</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Local or remote system</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Controller</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Enclosure</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Logical disk</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Logical disks</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Physical disk</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Hard disk drive</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Solid State drive</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Physical disks</td>
</tr>
<tr>
<td>![Icon]</td>
<td>Enclosure</td>
</tr>
<tr>
<td>Icon</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>![Connector icon]</td>
<td>Connector or other physical device</td>
</tr>
</tbody>
</table>

Enterprise View Status Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![OK icon]</td>
<td>Enterprise OK</td>
</tr>
<tr>
<td>![Error icon]</td>
<td>Enterprise error</td>
</tr>
<tr>
<td>![Access icon]</td>
<td>Enterprise no access</td>
</tr>
<tr>
<td>![Warning icon]</td>
<td>Enterprise warning</td>
</tr>
</tbody>
</table>

Enterprise View System Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![OK icon]</td>
<td>System OK</td>
</tr>
<tr>
<td>![Error icon]</td>
<td>System error</td>
</tr>
<tr>
<td>![Missing icon]</td>
<td>System missing</td>
</tr>
<tr>
<td>![Access icon]</td>
<td>System no access</td>
</tr>
<tr>
<td>![Warning icon]</td>
<td>System warning</td>
</tr>
</tbody>
</table>

Enterprise View Connector Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![OK icon]</td>
<td>Connector OK</td>
</tr>
<tr>
<td>![Error icon]</td>
<td>Connector failed</td>
</tr>
<tr>
<td>![Missing icon]</td>
<td>Connector missing</td>
</tr>
<tr>
<td>![Warning icon]</td>
<td>Connector warning</td>
</tr>
</tbody>
</table>

Enterprise View Controller Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![OK icon]</td>
<td>Controller OK</td>
</tr>
<tr>
<td>![Error icon]</td>
<td>Controller failed</td>
</tr>
<tr>
<td>![Missing icon]</td>
<td>Controller missing</td>
</tr>
</tbody>
</table>
Icon Description

- **Controller warning**

Enterprise View Enclosure Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Enclosure Management OK</td>
</tr>
<tr>
<td></td>
<td>Enclosure Management failed</td>
</tr>
<tr>
<td></td>
<td>Enclosure missing</td>
</tr>
<tr>
<td></td>
<td>Enclosure Management warning</td>
</tr>
</tbody>
</table>

Enterprise View Physical Disk Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Physical disk OK</td>
</tr>
<tr>
<td></td>
<td>Physical disks OK</td>
</tr>
<tr>
<td></td>
<td>Physical disks failure</td>
</tr>
<tr>
<td></td>
<td>Physical disks missing</td>
</tr>
<tr>
<td></td>
<td>Physical disks warning</td>
</tr>
</tbody>
</table>

Tab Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Summary</td>
</tr>
<tr>
<td></td>
<td>Properties</td>
</tr>
<tr>
<td></td>
<td>Resources</td>
</tr>
<tr>
<td></td>
<td>Events</td>
</tr>
<tr>
<td></td>
<td>Task</td>
</tr>
</tbody>
</table>

Dialog Box Icons

<table>
<thead>
<tr>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E-mail notification</td>
</tr>
<tr>
<td></td>
<td>Chart</td>
</tr>
</tbody>
</table>
Index

A
activity in storage space 31
event log 31
task log 31
activity on storage space, See monitoring adapters, See controllers
Add System wizard 98
Agent 15, 36–37
 introduction 15, 36
 starting 37
 Linux 37
 Windows 37
startup order 36
archive file 106
arrays 65
deleting 65
auto-discovery 97
auto-replace hot spares 47

B
background consistency check 57
boards, See controllers
bootable USB image 24
broadcasting event alerts 81, 91
build method 41, 45
 Build 41, 45
 Default 41, 45
building storage space 14, 35, 38–39, 42, 55, 56–57
 on existing array 38–39, 42, 57
 on new array 38, 42, 56

C
cards, See controllers
CIM server 15, 19
components 13, 67
defined 13
 viewing properties 67
Configuration Event Detail window 82
configuring 38–39, 42, 56–57
 See also building storage space
 connector modes 73
 controller 32, 84, 101
 clearing configuration 101
 controller connector modes 73
 controller performance optimization 71
 controllers 67, 71, 75, 78
 properties 67
 rescanning 71
 updating firmware 75, 78

direct attached storage 12
 multiple disk drives 105–106
 multiple logical drives 105
 RAID 0 logical drives 105–106
 with hot spare 105
 without hot spare 105

D
dedicated hot spares 47, 51
 creating 47
 removing 51
deleting logical drives 65
disk drive segments 118
 conceptual graphic 55
 different sizes in same logical drive 55–56
 failed state 69
 failure recovery 105–106
 multiple disk drives 105–106
 multiple logical drives 105
 RAID 0 logical drives 105–106
 with hot spare 105
 without hot spare 105
 identifying 67
 locating 67
 properties 67
 replacing in logical drives 69
 secure erasing 70
 segments in logical drives 56–57, 65
 updating firmware 75
 within logical drives 40
 drives 67
 identifying 67
failed logical drive (continued)
force online 105–106
firmware 75, 78–79
Firmware Update wizard 75
force online 105–106
formatting logical drives 42, 45

H
hard disk
13
hard disk drive
13
hard drive, See disk drive
help 33
hot spare activation 53
hot spares
47–51
auto-replace 47, 49
creating dedicated 47
limitations 47–48, 50
removing 51

I
icons
30, 81–82, 88
Enterprise View 30
event status icons 81–82, 88
identifying components 67

L
Linux
37
starting the Agent 37
local systems 35
locating drives 67
logging in 27, 35–36
logging into remote systems 37
logging out 34
logical drives
38–43, 45, 55, 55–57, 64–65, 69, 105–106, 118–125
build method 41, 45
building on existing array 38–39, 42, 57
building on new array 38, 42, 56
defined 55
deleting 65
different-sized disk drives 55–56
disabling background consistency check 57
disk drive segments 56–57, 65, 118
enabling background consistency check 57
formatting 42, 45

E
email notifications
81, 86–87, 89–92
"from" address 87
changing "from" address 87, 90–91
changing SMTP server 87, 90–91
disabling 87, 91
failed test emails 90
modifying recipient information 87, 90
recipient addresses 87
removing recipients 87, 90
SMTP server settings 87
test emails 87, 89
Email Notifications Manager
81, 86–87, 89, 92
opening 87
test emails 87, 89
enclosure
75, 79
updating firmware 75, 79
enclosures
32, 67, 84–85, 117
fan status 32, 84–85, 117
identifying 67
locating 67
monitoring 32, 84–85, 117
power status 32, 84–85, 117
status 32
temperature status 32, 84–85, 117
Enterprise View
28, 30
icons 30
event alerts 81, 91
event log 31, 81
event log (operating system) 92
events 31
See also monitoring
expander
75, 79
updating firmware 75, 79

F
failed disk drives
105–106
multiple logical drives 105
RAID 0 logical drives 105–106
without hot spare 105
failed logical drive
105–106
logical drives (continued)
- hot-swap rebuilding 64, 69, 106
- non-redundant 119
- options for creating 38
- partitioning 42, 45
- RAID 1 119
- RAID 10 121
- RAID 1E 120
- RAID 5 122
- RAID 50 124
- RAID 5EE 123
- RAID 6 125
- RAID 60 125
- RAID segments 118
- rebuild priority 64
- rebuilding 105
- renaming 65
- replacing disk drives 69
- selecting disk drives 40
- selecting RAID levels 39, 43

monitoring (continued)
- email notifications 81, 86–87, 89–92
- “from” address 87
- changing “from” address 87, 90–91
- changing SMTP server 87, 90–91
- failed test emails 90
- modifying recipient information 87, 90
- recipient addresses 87
- removing recipients 87, 90
- setup 87
- SMTP server settings 87
- test emails 87, 89
- Email Notifications Manager 81, 86, 92
- event details 82
- event log 31, 81
- options 81
- status icons 81–82, 88
- Storage Dashboard 67, 81, 83, 115–116
- task details 83
- task log 31

M
- event details 82
- event log 81
- Logout button 34
- monitoring activity and status 81
- notification types 81–82, 88
- event log 81
- event status icons 81–82, 88
- overview 28, 126
- status icons 81–82, 88
- Storage Dashboard 67, 81, 83, 115–116
- task details 83
- maxView Storage Manager 14–16, 28, 30, 36–37, 81, 126
- Agent 15, 36
- beginning steps 14
- Enterprise View 28
- event log 81
- icons 30
- introduction 14, 36
- logging into remote systems 37
- main window overview 28, 126
- ribbon 30
- Ribbon 28
- system requirements 16
- device properties 67

N
- non-RAID Mode controllers 116
- non-redundant logical drives 119
- notification types 81, 86, 92
- email notifications 81, 86, 92
- notifications 81, 91
- event alerts 81, 91

O
- online help 33
- operating system event log 92
- operating systems 16

P
- partitioning logical drives 42, 45
- POST prompt timeout 73
- Properties tab 67
- pure HBAs 116

R
- RAID 119–125
- non-redundant logical drives 119
- RAID 0 119
- RAID 1 119
- RAID 10 121
RAID (continued)

RAID 1E 120
RAID 122
RAID 5 124
RAID 50 125
RAID SEE 123
RAID 6 125
RAID 60 125
RAID levels 39, 43
selecting 39, 43
RAID segments 118
reactivating split mirror backup 61–62
rebuild priority 64
rebuilding (defined) 105
rebuilding logical drives 64, 69, 106
remirroring split mirror backup 61–62
remote systems 35, 98–99
adding manually 98
removing 99
renaming logical drives 65
rescanning controllers 71
Resources View 32, 84
ribbon 30, 37, 65, 71, 107
Add system 37
Change logical device name 65
Configure global disk drive cache 71
overview 30
Rescan 71
Save support archive 107
Ribbon 28

S
secure erase 70
segments 55, 118
Self-Monitoring Analysis and Reporting Technology (SMART) 85
Server Template File 94
silent installation 108–109
silent installation (continued)
switches, properties, and values 108–109
SMART statistics 85
SMI-S provider 15, 19
SMTP server 87, 90–91
split mirror backup array 61
status 31–32
See also monitoring
enclosures 32
event log 31
task log 31
See also monitoring
status icons 81–82, 88
main window 81–82, 88
Storage Dashboard 67, 81, 83, 115–116
storage space 12, 17
examples 17
support archive file 106
system requirements 16
systems 35, 67
local systems 35
properties 67
remote systems 35

T
task log 31
temperature status 32, 84–85, 117
terminology 12

U
updating firmware 75, 78–79

W
Windows 37
starting the Agent 37