Adaptec SCSI RAID
2120S/2200S

Software Reference Guide
Contents

1 Getting Started
 Audience 1-2
 Supported Platforms 1-2
 Organization 1-2
 Conventions 1-3
 Related Documentation 1-4

2 Accessing the Command Line Interface
 Accessing the CLI from the MS-DOS Prompt 2-2
 Accessing the CLI from the Windows Start Button 2-2
 To access the CLI from the UNIX/Linux prompt, display a window and type aaccli in any directory. When the system displays the CLI > prompt, you can use CLI commands. For the commands to work in any directory, the path in the startup file (.login or .cshrc) must include the directory where the software is installed. See your UNIX/Linux documentation for information on setting up directory paths in the .login and .cshrc files. 2-3
 Accessing the CLI from the NetWare Server Console 2-3
 Accessing the CLI from the UNIX Prompt 2-3
3 Syntax and Conventions for CLI Commands

CLI Features 3-1
CLI Command Syntax 3-2
 Class 3-3
 Action 3-3
 Object 3-3
 Switch 3-3
 Value 3-4
 Parameter 3-4
 Blank Space 3-4
CLI Parameter and Switch Value Types 3-4
 boolean 3-5
 integer 3-5
 string 3-6
 scsi_device 3-7
 free_space 3-8
 container 3-9
CLI Status Information 3-10
 The Stat and Task Items 3-10
 The Func Item 3-11
 The Ctr and State Items 3-12
4 General Control Commands
 close 4-2
 Syntax 4-2
 exit 4-2
 Syntax 4-2
 help, ? 4-2
 Syntax 4-2
 Parameters 4-2
 Switches 4-2
 history_size 4-3
 Command Availability 4-3
 Syntax 4-3
 Parameters 4-3
 open 4-3
 Syntax 4-3
 Parameters 4-3
 Switches 4-4
 reset_window 4-5
 Command Availability 4-5
 Syntax 4-5
 toggle_more 4-5
 Command Availability 4-5
 Syntax 4-5
5 container Commands

container add_level 5-3
 Syntax 5-3
 Parameters 5-3
 Examples 5-3
 Related Information 5-4

container create mirror 5-5
 Syntax 5-5
 Parameters 5-5
 Switches 5-6
 Examples 5-6
 Related Information 5-8

container create mmirror 5-9
 Notes 5-9
 Syntax 5-9
 Parameters 5-9
 Switches 5-10
 Examples 5-11
 Related Information 5-12

container create mstripe 5-14
 Notes 5-14
 Syntax 5-14
 Parameters 5-15
 Switches 5-15
 Examples 5-16
 Related Information 5-18

container create mvolume 5-19
 Notes 5-19
 Syntax 5-19
 Parameters 5-19
 Switches 5-20
 Examples 5-20
 Related Information 5-23

container create raid5 5-24
 Notes 5-24
 Syntax 5-24
 Parameters 5-24
Switches 5-25
Examples 5-27
Related Information 5-29
container create stripe 5-30
Notes 5-30
Syntax 5-30
Parameters 5-30
Switches 5-31
Examples 5-32
Related Information 5-34
container create volume 5-35
Notes 5-35
Syntax 5-35
Parameters 5-35
Switches 5-36
Examples 5-37
Related Information 5-39
container delete 5-40
Notes 5-40
Syntax 5-40
Parameters 5-40
Switches 5-40
Examples 5-41
Related Information 5-42
container extend file_system 5-43
Notes 5-43
Command And Switch Availability 5-44
Syntax 5-44
Parameters 5-44
Examples 5-44
Related Information 5-45
container extend mvolume 5-46
Command And Switch Availability 5-46
Syntax 5-46
Parameters 5-46
Examples 5-47
Related Information 5-49
container extend volume 5-50
 Command And Switch Availability 5-50
 Syntax 5-50
 Parameters 5-50
 Examples 5-51
 Related Information 5-53
container list 5-54
 Syntax 5-54
 Parameters 5-54
 Switches 5-54
 Examples 5-55
 Related Information 5-64
container lock 5-65
 Syntax 5-65
 Parameters 5-65
 Examples 5-65
 Related Information 5-66
container move 5-67
 Notes 5-67
 Syntax 5-67
 Parameters 5-67
 Examples 5-68
 Related Information 5-68
container promote 5-69
 Notes 5-69
 Syntax 5-69
 Parameters 5-69
 Examples 5-70
 Related Information 5-71
container readonly 5-72
 Syntax 5-72
 Parameters 5-72
 Examples 5-72
 Related Information 5-73
container readwrite 5-74
 Syntax 5-74
 Parameters 5-74
container scrub 5-94
 Syntax 5-94
 Parameters 5-94
 Switches 5-94
 Examples 5-95
 Related Information 5-96

container set cache 5-97
 Notes 5-97
 Syntax 5-97
 Parameters 5-98
 Switches 5-98
 Examples 5-99
 Related Information 5-100

container set failover 5-101
 Syntax 5-101
 Parameters 5-101
 Examples 5-101
 Related Information 5-102

container set global_failover 5-103
 Syntax 5-103
 Parameters 5-103
 Examples 5-103
 Related Information 5-104

container set io_delay 5-105
 Syntax 5-105
 Parameters 5-105
 Examples 5-106
 Related Information 5-107

container set label 5-108
 Syntax 5-108
 Parameters 5-108
 Examples 5-108
 Related Information 5-109
container show cache 5-110
 Syntax 5-110
 Parameters 5-110
 Examples 5-110
 Related Information 5-115
container show failover 5-116
 Syntax 5-116
 Parameters 5-116
 Examples 5-116
 Related Information 5-116
container split 5-117
 Syntax 5-117
 Parameters 5-118
 Examples 5-118
 Related Information 5-120
container unlock 5-121
 Syntax 5-121
 Parameters 5-121
 Examples 5-121
 Related Information 5-122
container unmirror 5-123
 Syntax 5-123
 Parameters 5-123
 Examples 5-123
 Related Information 5-124
6 controller Commands

controller details 6-2
 Syntax 6-2
 Examples 6-2
 Related Information 6-6
controller firmware compare 6-7
 Syntax 6-7
 Switches 6-7
 Examples 6-7
 Related Information: 6-7
controller firmware save 6-8
 Syntax 6-8
 Switches 6-8
 Examples 6-8
 Related Information: 6-9
controller firmware update 6-10
 Syntax 6-10
 Switches 6-10
 Examples 6-10
 Related Information: 6-10
controller list 6-11
 Syntax 6-11
 Parameters 6-11
 Switches 6-11
 Examples 6-11
 Related Information 6-12
controller pause_io 6-13
 Command And Switch Availability 6-14
 Notes 6-14
 Syntax 6-14
 Parameters 6-14
 Examples 6-14
 Related Information 6-15
controller rescan 6-16
 Syntax 6-16
controller reset_scsi_channel 6-17
 Syntax 6-17
Parameters 6-17
Examples 6-17
controller resume_io 6-18
 Syntax 6-18
 Examples 6-18
 Related Information 6-18
controller set automatic_failover 6-19
 Notes 6-19
 Syntax 6-19
 Examples 6-20
 Related Information 6-20
controller set array_verify 6-21
 Syntax 6-21
 Examples 6-21
 Related Information 6-22
controller show automatic_failover 6-23
 Syntax 6-23
 Examples 6-23
 Related Information 6-23
controller show channels 6-24
 Syntax 6-24
 Examples 6-24
 Related Information 6-26
controller show array_verify 6-27
 Syntax 6-27
 Examples 6-27
 Related Information 6-27
Adaptec SCSI RAID Software Reference Guide

7 disk Commands

 disk blink 7-2
 Syntax 7-2
 Parameters 7-2
 Switches 7-2
 Examples 7-2
 disk initialize 7-3
 Syntax 7-3
 Parameters 7-3
 Switches 7-3
 Examples 7-4
 disk list 7-5
 Syntax 7-5
 Parameters 7-5
 Switches 7-5
 Examples 7-5
 Related Information 7-8
 disk remove dead_partitions 7-9
 Syntax 7-9
 Parameters 7-9
 Examples 7-9
 Related Information 7-9
 disk set default 7-10
 Syntax 7-10
 Parameters 7-10
 Examples 7-10
 Related Information 7-11
 disk set smart 7-12
 Syntax 7-12
 Parameters 7-12
 Switches 7-13
 Examples 7-14
 Related Information 7-14
 disk show default 7-15
 Syntax 7-15
 Examples 7-15
 Related Information 7-15
disk show defects 7-16
 Syntax 7-16
 Parameters 7-16
 Switches 7-16
 Examples 7-16
disk show partition 7-18
 Syntax 7-18
 Examples 7-18
disk show smart 7-21
 Syntax 7-21
 Parameters 7-21
 Switches 7-21
 Examples 7-22
 Related Information 7-24
disk show space 7-25
 Syntax 7-25
 Parameters 7-25
 Switches 7-25
 Examples 7-25
disk verify 7-28
 Syntax 7-28
 Parameters 7-28
 Switches 7-28
 Examples 7-29
disk zero 7-30
 Command And Switch Availability 7-30
 Syntax 7-30
 Parameters 7-30
 Switches 7-30
 Examples 7-31
8 diagnostic Commands

diagnostic clear boot_parameters 8-2
 Syntax 8-2
 Examples 8-2
 Related Information 8-2
diagnostic dump structures 8-3
 Syntax 8-3
 Parameters 8-3
 Examples 8-3
 Related Information 8-3
diagnostic dump text 8-4
 Notes 8-4
 Syntax 8-4
 Examples 8-5
 Related Information 8-5
diagnostic load_arrays 8-6
 Syntax 8-6
 Examples 8-6
 Related Information 8-6
diagnostic moderation set count 8-7
 Syntax 8-7
 Parameters 8-7
 Related Information 8-7
diagnostic moderation set timer 8-8
 Syntax 8-8
 Parameters 8-8
 Related Information 8-8
diagnostic moderation show count 8-9
 Syntax 8-9
 Related Information 8-9
diagnostic moderation show timer 8-10
 Syntax 8-10
 Related Information 8-10
diagnostic set boot_parameter 8-11
 Syntax 8-11
 Parameters 8-11
 Related Information 8-11
diagnostic show boot_parameter 8-12
9 logfile Commands

logfile end 9-2
Synta x 9-2
Examples 9-2
Related Information 9-2

logfile start 9-3
Syntax 9-3
Parameter 9-3
Switches 9-3
Examples 9-3
Related Information 9-4

10 task Commands

task list 10-2
Synta x 10-2
Parameters 10-2
Switches 10-2
Examples 10-2
The Specific2 Column 10-6
Related Information 10-7

task resume 10-8
Syntax 10-8
Parameters 10-8
Switches 10-8
Examples 10-8
Related Information 10-9

task stop 10-10
Syntax 10-10
Parameters 10-10
11 enclosure Commands

enclosure activate slot 11-3
Syntax 11-3
Parameters 11-3
Examples 11-3
Related Information 11-4

enclosure identify slot 11-5
Syntax 11-5
Parameters 11-5
Switches 11-5
Examples 11-5
Related Information 11-6

enclosure list 11-7
Syntax 11-7
Parameters 11-7
Switches 11-7
Examples 11-8
Related Information 11-11

enclosure prepare slot 11-12
Syntax 11-12
Parameters 11-12
Examples 11-12
Related Information 11-13

enclosure set alarm 11-14
Syntax 11-14
Parameters 11-14
Switches 11-14
Examples 11-14
Related Information 11-14
enclosure set door 11-15
 Syntax 11-15
 Parameters 11-15
 Switches 11-15
 Examples 11-15
 Related Information 11-15
enclosure set fan 11-16
 Syntax 11-16
 Parameters 11-16
 Switches 11-17
 Examples 11-17
 Related Information 11-17
enclosure set interval 11-18
 Syntax 11-18
 Parameters 11-18
 Examples 11-18
 Related Information 11-19
enclosure set power 11-20
 Syntax 11-20
 Parameters 11-20
 Switches 11-20
 Examples 11-20
 Related Information 11-21
enclosure set scsiid 11-22
 Notes 11-22
 Syntax 11-22
 Parameters 11-22
 Examples 11-23
 Related Information 11-24
enclosure set temperature 11-25
 Syntax 11-25
 Parameters 11-25
 Examples 11-25
 Related Information 11-26
enclosure show fan 11-27
Adaptec SCSI RAID Software Reference Guide

Syntax 11-27
Parameters 11-27
Examples 11-28
Related Information 11-29
enclosure show power 11-30
Syntax 11-30
Parameters 11-30
Examples 11-30
Related Information 11-32
enclosure show slot 11-33
Syntax 11-33
Parameters 11-33
Examples 11-34
Related Information 11-36
enclosure show status 11-37
Syntax 11-37
Parameters 11-37
Examples 11-37
Related Information 11-40
enclosure show temperature 11-41
Syntax 11-41
Parameters 11-41
Examples 11-41
Related Information 11-43
12 Using the Adaptec Flash Utility
Introduction 12-1
Overview of the AFU 12-2
System Requirements 12-3
Firmware Floppy Kit 12-4
Running the AFU 12-5
Accessing the AFU from the GUI 12-5
Accessing the AFU from the Command Line 12-5
Flashing the Firmware Using AFU 12-7
AFU Commands 12-8
HELP 12-9
LIST 12-9
RESET 12-10
SAVE 12-10
UPDATE 12-11
VERIFY 12-12
VERSION 12-12
AFU Error Handling 12-13

13 Using the Array Configuration Utility
Introducing the Array Configuration Utility for MS-DOS 13-1
Interactive Versus Script Mode 13-2
Running the ACU 13-2
Using Interactive Mode 13-3
Creating an Array with ACU 13-3
Managing Arrays 13-5
Using Script Mode 13-8
Playback Mode 13-11
Record Mode 13-13
Script File Syntax 13-15
Error Handling 13-24
Playback and Record Notes 13-26
Example: Invoking the ACU and Using a Script 13-27
Creating an Automated Script A-1
Getting Started

In this Chapter

- **Audience** 1-2
- **Supported Platforms** 1-2
- **Organization** 1-2
- **Conventions** 1-3
- **Related Documentation** 1-4

The Adaptec SCSI RAID controller integrates advanced RAID technology with state-of-the-art controller hardware to deliver leadership performance, data availability, and storage management features.

To configure and manage components running on the Adaptec SCSI RAID controller, Adaptec has developed an easy-to-use graphical user interface (GUI) called Adaptec Storage Manager as well as a command line interface (CLI).

The CLI provides a rich alternative to Adaptec Storage Manager. Through the CLI, you perform most of the storage management tasks that you can perform with the Adaptec Storage Manager GUI and, in addition, some tasks not available in the GUI. The CLI also enables you to use the CLI commands in DOS command scripts and UNIX shell scripts.

This reference guide describes each of the commands available in the CLI.
Adaptec SCSI RAID Software Reference Guide

Audience

This reference guide is written for system administrators and experienced users who are familiar with SCSI device configuration and who have a general understanding of Microsoft Windows NT® 4.0 / Windows 2000 (basic disk) /Windows XP (basic disk). If you are running under NetWare, the guide assumes you are familiar with NetWare-related concepts and commands. This guide also assumes you are familiar with the conceptual material related to storage management on RAID controllers presented in the Adaptec SCSI RAID Software User’s Guide.

Supported Platforms

The Adaptec SCSI RAID controller operates on a variety of operating system platforms. See the installation guide that was supplied with your controller for a list of the supported operating system platforms.

Unless otherwise indicated, the commands and switches discussed in this guide are supported on the operating systems listed in the installation guide. For the latest supported operating system versions of the Adaptec SCSI RAID controller, visit Adaptec’s product web site at www.adaptec.com.

Organization

Chapter 1, Getting Started, provides an overview of this reference guide.

Chapter 2, Accessing the Command Line Interface, provides information on the ways you can access the CLI.

Chapter 3, Syntax and Conventions for CLI Commands, describes the features, conventions, command syntax, parameters, and value types that define the command line interface.

Chapter 4, General Control Commands, details general purpose commands such as open and close.

Chapter 5, container Commands, describes all the commands related to arrays.

Chapter 6, controller Commands, describes all the commands related to controllers.
Chapter 8, *diagnostic Commands*, describes the commands used to help fix problems that may occur during controller operation.

Chapter 7, *disk Commands*, describes the commands related to disks.

Chapter 9, *logfile Commands*, describes the commands used to record CLI command activities.

Chapter 10, *task Commands*, describes the commands used to work with tasks.

Chapter 11, *enclosure Commands*, describes the enclosure commands, which operate on enclosure management devices.

Chapter 12, *Using the Adaptec Flash Utility*, describes how to use the DOS application to update the flash EEPROM components.

Chapter 13, *Using the Array Configuration Utility*, describes how to use the BIOS utility for creating, configuring, and managing arrays.

Appendix A, *Automated Scripts*, provides examples of how to use the CLI commands in DOS command scripts.

Conventions

The following typographical conventions are use in this reference guide.

bold

Used to highlight information depicted in examples (for example, the *Type* column indicates that a RAID-5 set resides on array 0).

Courier

Used to highlight commands in text (for example, the *array create mirror* command).
Related Documentation

Use this reference guide when you need specific information about a CLI command (for example, syntax and parameter descriptions).

Note: When consulting the *Command Line Interface Reference Guide*, you can consider the terms “array” and “container” as synonymous if you keep in mind that containers have features that no other arrays have; such as, using the full capacity of a disk when creating a container and sharing a disk’s full capacity across multiple containers.

In addition, the term “array” has a general meaning beyond “RAID array;” for example, a rack of disks is often referred to as a disk array.

Other related documents include the following:

- **Adaptec SCSI RAID Installation Guide**
 The installation guide that ships with your RAID controller explains how to install it in your computer system. The installation guide also provides instructions on how to install the RAID software.

- **Adaptec SCSI RAID Software User’s Guide**
 Describes the features available in Adaptec Storage Manager and how to use them.
 The guide assumes that you are familiar with:
 - Basic functions of your operating system
 - Basic network administration terminology and tasks
 - RAID technology
Accessing the Command Line Interface

In this Chapter

- Accessing the CLI from the MS-DOS Prompt 2-2
- Accessing the CLI from the Windows Start Button 2-2
- Accessing the CLI from the NetWare Server Console 2-3
- Accessing the CLI from the UNIX Prompt 2-3

Note: When the CLI executes an asynchronous command, it displays status information in the title bar of a DOS command prompt window. The status information includes a percent number that indicates percentage completion. On NetWare, the status information appears in a different console screen. On UNIX, the status information appears at the bottom of the CLI window.
Accessing the CLI from the MS-DOS Prompt

To access the CLI from the MS-DOS prompt, move to the directory containing the `afacli` executable and then type `afacli`, as in the following example:

```
C:\>cd Program Files\Adaptec SCSI_RAID\AAC
C:\Program Files\Adaptec SCSI_RAID\AAC>afacli
```

Note: To access the CLI from any location, the path in the Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only) Registry or System Variables must include the directory where the CLI executable is installed. Or, you must be in the directory where the CLI executable resides.

See your Windows NT or MS-DOS documentation for more information.

Accessing the CLI from the Windows Start Button

You can execute the command line interface (CLI):

- From the Windows XP, Windows 2000 or Windows NT Start button

Note: The following procedure assumes that you accepted the default location for the software during installation.

To access the CLI from the Windows XP (basic disk only), Windows 2000(basic disk only) or Windows NT Start button:

1. Click the **Start** button and move the mouse cursor to **Programs**. Click on **Programs**.
2. Move the mouse cursor to **SMBE**. The Adaptec program group will display.
3. Move the mouse cursor to the **CLI** icon. Click on **CLI**.
Accessing the Command Line Interface

- From the NetWare server console
 To access the CLI from the NetWare server console, type `aaccli` at the prompt. When the system displays the CLI> prompt, which indicates that you can now use CLI commands.

- From the UNIX/Linux prompt
 To access the CLI from the UNIX/Linux prompt, display a window and type `aaccli` in any directory. When the system displays the CLI> prompt, you can use CLI commands. For the commands to work in any directory, the path in the startup file (`.login` or `.cshrc`) must include the directory where the software is installed. See your UNIX/Linux documentation for information on setting up directory paths in the `.login` and `.cshrc` files.

Accessing the CLI from the NetWare Server Console
To access the CLI from the NetWare server console, type `aaccli` at the prompt. The system displays the CLI> prompt, which indicates that you can now use CLI commands.

Accessing the CLI from the UNIX Prompt
To access the CLI from the UNIX prompt, display a window and type `aaccli` in any directory. The system displays the CLI> prompt, which indicates you can now use CLI commands. For the command to work in any directory, the path in the startup file (`.login` or `.cshrc`) must include the directory where the software is installed. See your UNIX documentation for information on setting up directory paths in the `.login` and `.cshrc` files.
Syntax and Conventions for CLI Commands

In this Chapter

- CLI Features 3-1
- CLI Command Syntax 3-2
- CLI Parameter and Switch Value Types 3-4
- CLI Status Information 3-10

CLI Features

To use the CLI efficiently, you need to understand the following features:

- Case sensitivity—CLI syntax elements are not case-sensitive except for strings.
- Command abbreviations—You can abbreviate commands, subcommands, and switches. You must provide enough characters so the commands are not ambiguous.
- Subcommand Mode—Subcommand mode simplifies command entry when you are performing repetitive commands on the same item. Subcommand mode works only for commands that have one or more subcommands.
Adaptec SCSI RAID Software Reference Guide

To enter subcommand mode, type the first part of any command that has subcommands and press Enter. The command you entered replaces the CLI> prompt and becomes the first part of any subsequent command you enter.

For example, to use subcommand mode for the array command:

1. Type array at the CLI> prompt, and press Enter.
 The CLI> prompt changes to _array >.

2. Enter valid subcommands, switches, and parameters for any array command and press Enter. For example, to change the number of array 1 to 2, simply type the following at the _array > prompt and press Enter:

 move 1 2

To exit subcommand mode, press Enter. (You may have to press Enter more than once to exit subcommand mode.)

■ CLI-unique commands

For NetWare systems, the following commands are unique to the CLI in that you use these commands when accessing the CLI from the NetWare server console:

- open
- close
- exit
- toggle_more

■ Comments—If the first non-blank character on a line in the CLI is an exclamation point (!), the rest of the line will be ignored. You can type comments after the exclamation point. This is particularly useful in scripts where you want to comment out sections of code.

CLI Command Syntax

You can enter only valid CLI software commands at the command line prompt.
Syntax and Conventions for CLI Commands

All commands use the following syntax:

```
[class] action [object] [/switch1[=value1]
[/switch2[=value2]...]] [parameter1 [parameter2...]]
```

The CLI syntax uses the following conventions:

```
[text] The text element within brackets is optional.
{type} The type specified within braces is the value type
(for example, boolean, integer, string, and so on).
parameter{type} The parameter defined by the value type.
[text...] Two or more text elements.
```

Class

CLI commands are grouped according to class. Classes currently supported include array, controller, diagnostic, disk, logfile, task, and enclosure and are required except in subcommand mode.

Action

An action specifies an operation to be performed by the CLI, such as open, create, list, exit, or show. An action is a required element, except in subcommand mode. In most cases, actions are preceded by a class and followed by an object, switches, and parameters.

Object

An object describes what to use in an action. Examples include mirror, volume, mstripe, and drive_letter.

Switch

A switch is an element applied to a command that allows a variation of the command. Switches are always optional.

If you specify a switch, it may require a value. Switches that are Boolean do not require a value when the switch is used because the switch defaults to TRUE or FALSE. Optionally, you can explicitly set a Boolean switch to TRUE or FALSE.
Value

A **value** is a type that applies to a switch. For each switch, you can have only one type of value. For example, a switch that is defined as a string value can never take an integer value. A space may be used within a value only within a quoted string. Examples of valid value types include Boolean, integer, string, scsi_device, free_space, and array.

You delimit a value that applies to a switch by using an equal sign, as in the following example:

```
AAC0>disk list /all =TRUE
Executing: disk list /all=TRUE
```

Note that a space to the left or right of the equal sign is permitted.

Parameter

Although some commands have optional parameters, **parameters** are usually mandatory. You must place optional parameters after mandatory parameters at the end of the command. For example, the `array remove failover` command has one required `scsi_device` parameter and additional optional `scsi_device` parameters:

```
array remove failover {array} {scsi_device} [{scsi_device}...].
```

As with switch values, parameters can be of only one type. For example, the `array` parameter can take only an integer value.

All parameters are separated by blank space. A space can be used in a parameter only within a quoted string.

Blank Space

Blank space is one or more spaces or tabs.

CLI Parameter and Switch Value Types

A parameter or switch value can be only one of several types. Simple value types include string, Boolean, and integer. Other value types include objects that can be manipulated, such as arrays (or arrays) and SCSI devices. This section explains the CLI parameter and switch value types.
boolean

A boolean has a value of either TRUE or FALSE and can be specified with any of the following key words:

- TRUE can be specified with TRUE, 1, ON, or YES. For switches, you can also specify TRUE by using the switch without any switch value. For example, /readonly and /readonly=TRUE are identical.

- FALSE can be specified with FALSE, 0, OFF, or NO. When a switch is not specified, it takes the default value (usually, FALSE) specified in the switch description section of a command. For example, open aac0 is the same as open /readonly=FALSE aac0.

integer

An integer is a positive or negative number that has a value between -2^{63} and $2^{63} - 1$. Although the valid range is usually much smaller, all integers have 64 bits of precision and do not contain decimal points.

You can specify an integer as a mathematical equation that uses an asterisk (*) to multiply, a plus sign (+) to add, a minus sign (−) to subtract, a slash (/) to divide, and parentheses [(] to specify order of operations. If you do not use parentheses, all operations are completed left to right. No spaces are allowed in the expression.

Numbers in an equation that:

- Begin and end with no suffix are decimal
- Begin with 0x or end with h are hexadecimal
- End with o indicate octal
- End with z indicate binary

You can attach special multipliers to the end of any number to allow for easy translation to reasonable disk sizes. Table 3-1 lists the letters and their multiplicative values:
You cannot use decimal points. To specify 1.5 GB, for example, you must use (3G/2).

Note: All suffixes are case-insensitive! That is, you can use upper or lower-case characters. For example you can specify 10 M or 10 m.

Table 3-2 lists examples of valid integers and their corresponding values:

<table>
<thead>
<tr>
<th>Integer</th>
<th>Value (in decimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>219</td>
<td>219</td>
</tr>
<tr>
<td>3*4</td>
<td>12</td>
</tr>
<tr>
<td>(5+3*24)</td>
<td>192</td>
</tr>
<tr>
<td>(5+(3*24))</td>
<td>77</td>
</tr>
<tr>
<td>0x123</td>
<td>291</td>
</tr>
<tr>
<td>(12+52h+1010z)</td>
<td>104</td>
</tr>
<tr>
<td>100M</td>
<td>104,857,600</td>
</tr>
<tr>
<td>2G</td>
<td>2,147,483,648</td>
</tr>
</tbody>
</table>

string

You can specify a text *string* with or without quotation marks. If spaces are needed, however, the string must be specified with quotation marks; otherwise, the CLI interprets spaces as delimiters.

A string can use either double quotes or single quotes but must start and end with the same type of quotes. Also, within a quoted string,
a quotation mark of the same type used to surround the string can be specified by repeating that quotation mark twice in the string.

Table 3-3 lists examples of valid strings and their corresponding values:

Table 3-3. Strings and Corresponding Values

<table>
<thead>
<tr>
<th>String</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VOL_set</td>
<td>VOL_set</td>
</tr>
<tr>
<td>"VOL label"</td>
<td>VOL label</td>
</tr>
<tr>
<td>’Use “ mark’</td>
<td>Use ” mark</td>
</tr>
<tr>
<td>”Use ’ mark”</td>
<td>Use ’ mark</td>
</tr>
<tr>
<td>“Use Both “ and ’ mark”</td>
<td>Use Both ” and ’ mark</td>
</tr>
</tbody>
</table>

scsi_device

Specifies a SCSI device. SCSI device descriptions have three parts: SCSI channel number, SCSI device ID, and SCSI device logical unit number (LUN).

The following syntax defines the scsi_device parameter:

```
({integer},{integer},{integer})
```

Each integer corresponds to one component of a SCSI device descriptor or specifier: the first integer is the SCSI channel number, the second integer is the SCSI device ID, and the third integer is the SCSI device LUN.

The actual values that the CLI supports are as follows:

- SCSI channel number = (for example, 0, 1, 2, 3, and so on). See the installation guide for your controller to determine the actual number of channels it supports.
- SCSI device ID = (0 through 15 inclusive)
- SCSI device LUN = 0 through 7 inclusive

Table 3-4 displays the syntax for SCSI device switch value type abbreviations:
Table 3-4. SCSI Device Switch Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Syntax</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCSI channel number, SCSI device ID</td>
<td>((integer),(integer))</td>
</tr>
<tr>
<td>SCSI device ID</td>
<td>((integer))</td>
</tr>
<tr>
<td>SCSI device ID</td>
<td>{integer}</td>
</tr>
</tbody>
</table>

Table 3-5 displays valid SCSI device specifiers. The second two examples contain a default LUN number, and the last two examples contain default channel and LUN numbers. You can specify these defaults using the `disk set default` command (see page 7-10).

Table 3-5. SCSI Device Specifiers

<table>
<thead>
<tr>
<th>Example</th>
<th>SCSI Channel Number, SCSI Device ID, SCSI Device LUN</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1,1,4)</td>
<td>Channel 1, Device 1, LUN 4</td>
</tr>
<tr>
<td>(3,2,0)</td>
<td>Channel 3, Device 2, LUN 0</td>
</tr>
<tr>
<td>(3,2)</td>
<td>Channel 3, Device 2, LUN default¹</td>
</tr>
<tr>
<td>(0,1)</td>
<td>Channel 0, Device 1, LUN default¹</td>
</tr>
<tr>
<td>(1)</td>
<td>Channel default¹, Device 1, LUN default¹</td>
</tr>
<tr>
<td>1</td>
<td>Channel default¹, Device 1, LUN default¹</td>
</tr>
</tbody>
</table>

¹ Set by the `disk set default` command.

free_space

Freespace (also known as available space) is specified by a SCSI device and, optionally, a size. If you do not specify a size, parentheses are optional.

Therefore, the following syntaxes are allowed for the free_space parameter:

({scsi_device},{freespace_size})

({scsi_device})

{scsi_device}

If you do not specify the freespace_size parameter, it defaults to the size of the first freespace area available on the specified SCSI device. Note that offsets are not specified for freespace. The offset
used is the first offset that starts a freespace area large enough to fit size bytes.

Table 3-6 lists valid free_space specifiers.

<table>
<thead>
<tr>
<th>Freespace Specifier</th>
<th>SCSI Channel Number, SCSI Device ID, SCSI Device LUN; Use n Amount of Freespace</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1, 2), 1G</td>
<td>SCSI Device: Channel 1, Device ID 2, LUN default; use 1 GB of freespace</td>
</tr>
<tr>
<td>5</td>
<td>SCSI Device: Channel default, Device ID 5, LUN default; use all freespace if empty or all of the first freespace available is some is used</td>
</tr>
<tr>
<td>(8, 2G)</td>
<td>SCSI Device: Channel default, Device ID 8, LUN default; use 2 GB of freespace</td>
</tr>
</tbody>
</table>

Note: When specifying freespace during an array create volume operation, you must explicitly specify the SCSI device’s channel, device ID, and logical unit number. You cannot use any default values for the SCSI device. In addition, you must also specify the size of the freespace(s).

container

A controller currently supports 24 visible arrays. A visible array is an array that is visible to the operating system and users. Visible arrays are identified with array IDs 0 through 23.

Array IDs 24 through 63 are reserved for hidden arrays. A hidden array is an array that is not visible to the operating system and can only be used by other arrays. (However, the array list command displays hidden arrays.)

The Parameters section uses the following syntax to specify an array:

```
{array}
```

This syntax specifies the ID number (0 to 63 inclusive) of the array.

A controller assigns a unique ID to each of its arrays when you create it.
CLI Status Information

When invoked from the MS-DOS prompt or the Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only) Start button, the CLI displays status information in the title bar of a DOS command prompt window as it executes an asynchronous command. On NetWare, the status information appears in a different window. On UNIX systems, the CLI displays this status information at the bottom of the CLI window.

The following example shows the status information for the array create mirror command:

Stat:OK!Task:101,Func:MCR Ctr:0,State:DNE 100.0%

The following sections describe each item that the CLI displays in the title bar.

The Stat and Task Items

The Stat item displays the status of the currently running task. Typically, the item displays the value OK! to indicate the task is executing correctly. This is the value that appears in the example.

The Task item displays the ID number associated with a specific task. The controller software assigns each task a unique ID number. The task ID that appears in the example is 101.
The Func Item

The Func item displays the type of task running on the controller. Table 3-7 describes the values that the Func item can display.

Table 3-7. Function Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSV</td>
<td>File system verify task.</td>
</tr>
<tr>
<td>FSX</td>
<td>File system extend task. The array extend mvolume and array extend volume commands cause the FSX value to display.</td>
</tr>
<tr>
<td>FTF</td>
<td>Array format task with a FAT file system specified. The array format command with the /file_system switch set to FAT causes the FTF value to display.</td>
</tr>
<tr>
<td>MCR</td>
<td>Mirror set create or multilevel mirror set create task. The array create mirror and array create mmirror commands cause the MCR value to display.</td>
</tr>
<tr>
<td>MMR</td>
<td>Merge a broken mirror task. The array merge command causes the MMR value to display.</td>
</tr>
<tr>
<td>MSC</td>
<td>Array scrub task. The array scrub command causes the MSC value to display.</td>
</tr>
<tr>
<td>NTF</td>
<td>Array format task with an NTFS file system specified. The array format command with the /file_system switch set to NTFS causes the NTF value to display.</td>
</tr>
<tr>
<td>R5R</td>
<td>RAID-5 rebuild task.</td>
</tr>
<tr>
<td>R5S</td>
<td>RAID-5 set create task with the scrub method specified. The array create raid5 command with the /scrub switch specified causes the R5S value to display.</td>
</tr>
<tr>
<td>RCF</td>
<td>Array reconfigure task. The array reconfigure command causes the RCF value to display.</td>
</tr>
<tr>
<td>SCV</td>
<td>Verify all blocks on a SCSI disk device task. The disk verify command causes the SCV value to display.</td>
</tr>
<tr>
<td>SCZ</td>
<td>Clear an entire SCSI disk task. The disk zero command causes the SCZ value to display.</td>
</tr>
<tr>
<td>SVR</td>
<td>Verify all blocks and repair bad blocks on a SCSI disk device task. The disk verify command with the /repair switch causes the SVR value to display.</td>
</tr>
</tbody>
</table>
The Ctr and State Items

The Ctr item displays the ID number of the array associated with the task. In the example, the array’s ID is 0 (zero).

The State item displays the state of the task along with a running percentage value that indicates the progress of the currently running task. The item shows the percentage in tenths of a percent increments. The currently running task is complete when the State item displays 100%.

Table 3-8 describes the state values that the State item can display.

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAD</td>
<td>The task failed and is no longer running.</td>
</tr>
<tr>
<td>DNE</td>
<td>The task successfully completed or the task is no longer running (that is, the task is done).</td>
</tr>
<tr>
<td>RUN</td>
<td>The task is running.</td>
</tr>
<tr>
<td>SUS</td>
<td>The task was suspended. Typically, you suspend a task with the task suspend command.</td>
</tr>
<tr>
<td>UNK</td>
<td>The controller reported an unknown status for the task.</td>
</tr>
</tbody>
</table>
General Control Commands

In this Chapter

- `close` 4-2
- `exit` 4-2
- `help, ?` 4-2
- `history_size` 4-3
- `open` 4-3
- `reset_window` 4-5
- `toggle_more` 4-5

The CLI general control commands are discussed in alphabetical order and use the following syntax:

`command [subcommand] [/switch=value] [parameter]`
Adaptec SCSI RAID Software Reference Guide

close

To close the currently opened controller when all access is completed, use the `close` command.

Syntax

```
close
```

exit

To close the currently opened controller and exit the CLI, use the `exit` command.

Syntax

```
exit
```

help, ?

To invoke general or topical Help commands, use the `help` command or the `?` (question mark).

Syntax

```
? [{command}]
{command} ?
help [/full] [{command}]
help [/full] {command subset}
```

Parameters

If the command has more subcommands, `help` lists the subcommands and their functions. If a complete command is used, such as `array list`, the CLI `help` displays all possible switches.

Switches

`/full`

Displays all relevant commands along with the command format and all command switches.
General Control Commands

history_size
To set the size of the command history buffer, use the `history_size` command.

Command Availability
This command is supported only on UNIX.

Syntax
```
history_size {buffer_size}
```

Parameters
- `{buffer_size}`
 - Specifies the size of the command history buffer. The default size is 200.

open
To open a controller, use the `open` command. The `open` command prepares a particular controller for access by the CLI. If you specify this command when another controller is open during a particular command session, the CLI closes the currently opened controller and then opens the specified controller.

Syntax
```
open [/readonly{=boolean}] [/domain{=string}] {string}
```

Parameters
- `{string}`
 - Specifies the computer name and the controller you want to open. For the string, use the standard format `\nodename\AACn`, where `n` is the controller number.
 - For local controllers, you can omit the `\nodename` in the string specification.
If the computer name has a dash (-) in the name (for example, proj-athena), enclose the entire string within quotes. For example:

"\proj-athena\aac0"

Switches

`/readonly{=boolean}`

Specifies whether to open the controller for read-only access. A value of `TRUE` indicates the CLI opens the controller for read-only access.

If you do not specify this switch, it defaults to `/readonly=FALSE` (which means the CLI opens the controller for read/write access).

Note that if you open the controller with read-only access, you can use only the commands that do not change the controller configuration.

`/domain{=string}`

Specifies the domain (the local domain or a trusted domain) in which the specified computer that contains the controller resides. If you do not specify this switch, the CLI assumes the local domain.

This switch is supported on the following operating systems:

- Windows NT
- Windows 2000 (basic disk only)
- Windows XP (basic disk only)

Note: You can open controllers for read-write access in any GUI or CLI session only once per controller. Thereafter, you (and other users) can open and access the previously opened controller only in read-only mode.
reset_window
To reset the window, use the reset_window command.

Command Availability
This command is supported only on UNIX.

Syntax
reset_window

toggle_more
To turn on or off the <Press any key to continue> functionality, use the toggle_more command.

After you type toggle_more on the NetWare console, the command displays an appropriate message indicating whether the <Press any key to continue> functionality is on or off.

Command Availability
This command is supported only on NetWare.

Syntax
toggle_more
container Commands

In this Chapter

- container add_level 5-3
- container create mirror 5-5
- container create mmirror 5-9
- container create mstripe 5-14
- container create mvolume 5-19
- container create raid5 5-24
- container create stripe 5-30
- container create volume 5-35
- container delete 5-40
- container extend file_system 5-43
- container extend mvolume 5-46
- container extend volume 5-50
- container list 5-54
- container lock 5-65
- container move 5-67
- container promote 5-69
- container readonly 5-72
- container readwrite 5-74
- container reconfigure 5-76
- container release_cache 5-83
The array commands are discussed in alphabetical order and use the following syntax:

```
container action [object] [/switch{=value}] [parameter]
```

Note: The examples in this chapter assume that you have first opened the controller before executing the container command. The initial step of opening the controller is not shown.
container Commands

container add_level

To create a multilevel volume set from an existing array by adding a volume set on top of the array, use the container add_level command. The existing array cannot be a multilevel array.

The container add_level command enables dynamic expansion of an array and can be executed even while an array is in use. After executing the command, you can use the container extend mvolume command to add more space.

Syntax

```
container add_level {container}
```

Parameters

(container)

Specifies the ID number (0 to 63) of the array to convert to a multilevel volume set.

The specified array must not be a multilevel array.

Examples

Before creating a multilevel volume set, use the container list command to obtain information about any existing arrays. As the following example shows, there is an array 0 (a stripe set) on this controller:

```
AAC0>container list
Executing: container list

Num Total Oth Stripe Scsi Partition
Dr Label Type Size Ctr Size Usage C:ID:L Offset:Size
-- ----- ------ ------ --- ------ ------- ------ ---------------
0 Stripe 45MB 32KB None 0:02:0 64.0KB: 15.0MB 0:03:0 64.0KB: 15.0MB 0:04:0 64.0KB: 15.0MB

The following example creates a multilevel volume set on top of array 0, which is a stripe set previously created with the container create stripe command:

```
AAC0>container add_level 0
Executing: container add_level 0
```
Use the container list command after using the container add_level command to display information about the multilevel volume set, as in the following example:

```
AAC00>container list
Executing: container list
```

```
<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Volume</td>
<td>45MB</td>
<td>32KB</td>
<td>0:02:0 64.0KB: 15.0MB</td>
</tr>
<tr>
<td>63</td>
<td>Stripe</td>
<td>45MB</td>
<td>32KB</td>
<td>0:03:0 64.0KB: 15.0MB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:04:0 64.0KB: 15.0MB</td>
</tr>
</tbody>
</table>
```

The following list describes the change to the display as a result of creating a multilevel volume set with the container add_level command:

- The **Num Label** column displays two ID numbers. The first ID (0) is the newly created volume set. The second ID (63) is the original array (the stripe set).

  If you specified a label when creating the multilevel volume set, it appears in this column. Because no label was specified when the multilevel volume set was created, no label appears in the column.

- The **Type** column displays two array types: Volume and Stripe. The Volume array type indicates that the newly created array is a volume set. This is the array created after the container add_level command completes.

  The Stripe array type indicates the array whose ID was specified to the container add_level command. This is the original array previously created with the container create stripe command.

**Related Information**

container commands:

- container extend mvolume (page 5-46)
- container list (page 5-54)
- container promote (page 5-69)
**container create mirror**

To create a mirror set from a single-partition volume set and freespace, use the `container create mirror` command. Any data on the original volume set remains intact during mirror creation and the user sees no interruption in service.

If you created a mirror set on a NetWare server, you can run the `list devices` command on the NetWare console to verify its creation and then create the necessary NetWare disk partitions and volumes.

For information on how to create partitions and volumes, see the appropriate NetWare documentation.

**Syntax**

```plaintext
container create mirror [/wait{=boolean}] [/io_delay{=integer}] {container} {scsi_device}
```

**Parameters**

- `{container}`
  - Specifies the ID number (0 to 63) of the array on which to create a mirror set. You create a mirror set from a single-partition volume set.

- `{scsi_device}`
  - Specifies the ID for the SCSI device whose freespace you want to use for mirroring the volume set specified in the container parameter. A SCSI ID consists of a SCSI bus number (e.g., 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the installation guide for your controller to determine the number of buses it actually supports.

  See the `scsi_device` section on page 3-7 for more information on how to specify the SCSI device.
Switches

/wait{=boolean}

Specifies whether to create the mirror set synchronously. If you set this switch to TRUE, the command prompt does not return until the mirror-set creation completes. If you set this switch to FALSE, the mirror-set creation starts asynchronously and the command prompt returns immediately.

/io_delay{=integer}

Specifies the number of milliseconds the controller waits between the I/Os required to create the mirror set. If you do not specify this switch, the I/O delay is always zero (0). The I/O delay value is not preserved between reboots of the operating system.

Examples

Before creating a mirror set, use the container list command to obtain information about any existing arrays. As the following example shows, there is one existing array (array 0, a volume set) on this controller prior to the time the mirror set is created:

AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Size</th>
<th>Ctr Size</th>
<th>Usage</th>
<th>C:ID:L Offset:Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>F:</td>
<td>0</td>
<td>Volume</td>
<td>10MB</td>
<td>NTFS</td>
<td>0:02:0</td>
<td>64.0KB: 10.0MB</td>
</tr>
</tbody>
</table>

The following example shows how to create a mirror set synchronously from volume set 0 using freespace on SCSI device (0,3,0):

AAC0>container create mirror /wait /io_delay=10 0 (0,3,0)
Executing: container create mirror /wait=TRUE /io_delay=10 0 (CHANNEL=0, ID=3, LUN=0)

As the command executes, note the title bar of the DOS window displays the status of the command. For example:

Stat:OK!Task:101, Func: MCR Ctr:0, State: RUN 97.2%
container Commands

See page 3-10 for detailed information on the status information that the command displays in the title bar as it executes the task.

Use the container_list command after the container create mirror command completes execution to display information about the mirror set, as in the following example:

AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Label</td>
<td>Type</td>
<td>Size</td>
<td>Ctr Size</td>
<td>Usage</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>Mirror</td>
<td>10MB</td>
<td>NTFS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following list describes the changes to the display as a result of using the container create mirror command:

- The Type column displays a new array type, which in the example is Mirror instead of the previously displayed Volume.
- The State column displays Normal (instead of a blank) as the mirror state.

(Note that this column appears only if you specify the /full switch with the container list command.)

- The Scsi C: ID: L column displays the SCSI device IDs for the two halves of the mirror set.
- The Partition Offset:Size column displays the partition offset and size for the two halves of the mirror set.

If a partition is dead, the “:” (colon) in the Partition Offset:Size column changes to a “!” (exclamation point). See the disk remove dead_partitions (page 7-9) command for more information on dead partitions.

After creating a mirror set, you can manipulate it by using the

- container split command to split a mirror set
- container unmirror command to unmirror a mirror set
Related Information

container commands:
- container create mmirror (page 5-9)
- container list (page 5-54)
- container split (page 5-117)
- container unmirror (page 5-123)

disk commands:
- disk remove dead_partitions (page 7-9)
container create mmirror

To create a multilevel array of mirror sets from a multilevel array of single-partition volume sets and freespace, use the container create mmirror command. Typically, you use this command after promoting a volume set built from multiple partitions with the container promote command.

The container create mmirror command is fully dynamic. If you use this command, users will not see any change or experience any interruption in service. However, performance may be reduced.

Notes

When creating a multilevel array of mirror sets on a NetWare server, you specify the container IDs (as described in the Parameters section) for the arrays from which you want to create the multilevel mirror set. If NetWare is using any of these arrays, an appropriate message displays. This message indicates that one or more of the arrays you specified is in use by NetWare. The message directs you to remove any NetWare volumes and partitions from these arrays. You can then create a multilevel array of mirror sets on a NetWare server.

After you create a multilevel array of mirror sets you can run the list devices command on the NetWare console to verify its creation and then create the necessary NetWare disk partitions and volumes.

For information on how to create partitions and volumes, see the appropriate NetWare documentation.

Syntax

container create mmirror [/io_delay={integer}] [/wait={boolean}] {container} {scsi_device} [{scsi_device}...]

Parameters

{container}

Specifies the ID number (0 to 63) of the array whose underlying volume sets the command converts to mirror sets. You create a multilevel array of mirror sets from a multilevel array of single-partition volume sets and freespace.
Specifies the ID for the SCSI device whose freespace you want to use to create the multilevel array of mirror sets. The size of this freespace should be greater than or equal to the size of the first underlying volume set. A SCSI ID consists of a SCSI bus number (e.g., 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the installation guide for your controller to determine the number of buses it actually supports.

See the `scsi_device` section on page 3-7 for more information on how to specify the SCSI device.

Specifies the IDs for additional SCSI devices whose freespaces you want to use to create the multilevel array of mirror sets. There must be sufficient contiguous space available on each specified device.

The number of SCSI devices you specify must be equal to the number of single-partition volume sets that make up the multilevel array of volume sets. The size of the freespace used is equal to its corresponding underlying volume set.

**Switches**

`/io_delay={integer}`

Specifies the number of milliseconds the controller waits between the I/Os required to create the multilevel array of mirror sets. If you do not specify this switch, the I/O delay is always zero (0). The I/O delay value is not preserved between reboots of the operating system.

`/wait={integer}`

Specifies whether to create the multilevel array of mirror sets synchronously or asynchronously. If you set this switch to TRUE, the command creates the multilevel array of mirror sets synchronously and the command prompt does not return until the mirror-set creation task completes.

If you do not specify this switch, the mirror-set creation starts asynchronously and the command prompt returns immediately.
Examples

Before creating a multilevel array of mirror sets, use the `container list` command to obtain information about any existing arrays. As the following example shows, array 0 is a volume set that consists of two underlying volume sets created with the `container promote` command:

```
AAC0>container list
Executing: container list
```

<table>
<thead>
<tr>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Size</th>
<th>Ctrl</th>
<th>Size</th>
<th>Usage</th>
<th>C:ID:L Offset:Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>F:</td>
<td>Volume</td>
<td>30MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NTFS</td>
</tr>
<tr>
<td>63</td>
<td>Volume</td>
<td>15MB</td>
<td>0:02:0</td>
<td>64.0KB</td>
<td>15.0MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Volume</td>
<td>15MB</td>
<td>0:03:0</td>
<td>64.0KB</td>
<td>15.0MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to create a multilevel array of mirror sets with the following characteristics:

- The array specified (0) is a multilevel array of volume sets that was previously created with the `container promote` command.
- The freespace from SCSI devices (0,4,0), and (0,5,0) are used to mirror the underlying volume sets.
- The default I/O delay is taken.
- The multilevel array of mirror sets is created asynchronously.

```
AAC0>container create mmirror 0 (0,4,0) (0,5,0)
Executing: container create mmirror 0
(CHANNEL=0,ID=4,LUN=0) (CHANNEL=0,ID=5,LUN=0)
```

As the command executes, note the title bar of the DOS window displays the status of the command. For example:

```
```

See page 3-10 for detailed information on the status information that the command displays in the title bar as it executes the task.

Use the `container list` command after using the `container create mmirror` command to display information about the multilevel array of mirror sets:

```
AAC0>container list
Executing: container list
```

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The following list describes the change to the display as the result of creating a multilevel array of mirror sets with the `container create mmirror` command:

- The **Dr** column is blank to indicate that the newly created mirror sets (63 and 62) do not have a drive letter assigned to them.
- The **Type** column displays Mirror for arrays 63 and 62 to indicate that the underlying arrays are mirror sets.
- The **State** column displays the state of the arrays, which in this example are all in the Normal state.
  
  Note that this column appears only if you specify the `/full` switch with the `container list` command.
- The **Scsi C:ID:L** column displays the SCSI device ID for the disk(s) on which the underlying mirror set(s) reside. In the example, mirror set 63 resides on disk 0:02:0 and 0:04:0. Mirror set 62 resides on disk 0:03:0 and 0:05:0.
- The **Partition Offset:Size** column displays the partition offset(s) and size(s) for the underlying mirror set(s). In the example mirror set 63 and 62 have partition offsets of 64.0 KB and sizes of 15.0 MB.

  If a partition is dead, the “:” (colon) in the **Partition Offset:Size** column changes to a “!” (exclamation point). See the `disk remove dead_partitions` (page 7-9) command for more information on dead partitions.

**Related Information**

**container commands:**

- `container create mirror` (page 5-5)
- `container list` (page 5-54)
- `container promote` (page 5-69)
container Commands

disk commands:
  ■ disk remove dead_partitions (page 7-9)
container create mstripe

To create a multilevel stripe set from equally sized arrays, use the container create mstripe command. The top level of a multilevel stripe array can only be a stripe set. You can create the following types of multilevel stripe set:

- Stripe set of mirror sets
- Stripe set of volume sets
- Stripe set of stripe sets
- Stripe set of RAID-5 sets (a RAID-50 set)

Notes

When creating a multilevel array of stripe sets on a NetWare server, you specify the container IDs (as described in the Parameters section) for the arrays from which you want to create the multilevel stripe set. If NetWare is using any of these arrays, an appropriate message displays. This message indicates that one or more of the arrays you specified is in use by NetWare. The message directs you to remove any NetWare volumes and partitions from these arrays. You can then create a multilevel array of stripe sets on a NetWare server.

After you create a multilevel array of stripe sets you can run the list devices command on the NetWare console to verify its creation and then create the necessary NetWare disk partitions and volumes.

For information on how to create partitions and volumes, see the appropriate NetWare documentation.

Syntax

container create mstripe [/stripe_size{=integer}] [/label{=string}] {container} [{container}...]

5-14
container Commands

Parameters

{container}
    Specifies the ID number (0 to 63) of the array from which you want to create the multilevel stripe set.
{container}...
    Specifies the ID number or numbers (0 to 63) of one or more arrays from which you want to create the multilevel stripe set. You can use up to 16 arrays to create a multilevel stripe set. All specified arrays must be the same size as the first container parameter and separated by blank spaces.

Switches

/stripe_size={integer}
    Specifies the stripe size for the multilevel stripe set. Valid values are 16 KB, 32 KB, and 64 KB.
    If you do not specify the switch, it defaults to 64 KB.

/label={string}
    Specifies a label to be assigned to the newly created multilevel stripe set. You can specify a maximum of sixteen characters for the label.
    If you do not specify the switch, it defaults to no label. If you do not specify a label, you can do so later by using the container set label command.
Examples

Before creating a multilevel stripe set, use the `container list` command to obtain information about any existing arrays.

As the following example shows, there are two existing arrays (mirror sets) on this controller at the time the multilevel stripe set is created. These mirror sets were previously created with the `container create mirror` command.

```
AAC0>container list
Executing: container list
```

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth</th>
<th>Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr</td>
<td>Label</td>
<td>Type</td>
<td>Size</td>
<td>Ctr Size</td>
<td>Usage</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>Mirror</td>
<td>15MB</td>
<td>None</td>
<td>0:02:0 64.0KB: 15.0MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:02:0 15.0MB: 15.0MB</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Mirror</td>
<td>15MB</td>
<td>None</td>
<td>0:03:0 64.0KB: 15.0MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:03:0 15.0MB: 15.0MB</td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to create a multilevel stripe set from two equally sized arrays, using the default stripe size of 64 KB. In this example, the two equally sized arrays are mirror sets:

```
AAC0>container create mstripe 0 1
Executing: container create mstripe 0 1
container 0 created
```

On UNIX systems, the message displayed after you execute the `container create mstripe` command includes the root special file associated with the newly created multilevel stripe set.

Use the `container list` command after using the `container create mstripe` command to display information about the multilevel stripe set, as in the following example:

```
AAC0>container list
Executing: container list
```

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth</th>
<th>Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr</td>
<td>Label</td>
<td>Type</td>
<td>Size</td>
<td>Ctr Size</td>
<td>Usage</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
<td>---------</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>Stripe</td>
<td>30MB</td>
<td>0</td>
<td>64KB</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:02:0 64.0KB: 15.0MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:02:0 15.0MB: 15.0MB</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Mirror</td>
<td>15MB</td>
<td>None</td>
<td>0:03:0 64.0KB: 15.0MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:03:0 15.0MB: 15.0MB</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Mirror</td>
<td>15MB</td>
<td>None</td>
<td>0:03:0 64.0KB: 15.0MB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:03:0 15.0MB: 15.0MB</td>
<td></td>
</tr>
</tbody>
</table>
container Commands

The following list describes the change to the display as the result of creating a multilevel stripe set with the `container create mstripe` command:

- The **Num Label** column displays the ID number (in the example, 0) of the newly created multilevel stripe set and (indented to the right) the ID numbers of the arrays that make up the multilevel stripe set. In the example, arrays 63 and 62 are the arrays (mirror sets) that make up the multilevel stripe set.

  If you specify a label when creating the multilevel stripe set, it appears in this column. Because no label was specified when the multilevel stripe set was created, no label appears in the column.

  On UNIX systems, the root special file associated with the multilevel stripe set also appears in this column.

- The **Type** column displays the type Stripe for the newly created multilevel stripe set. The **Type** column also displays the array type for the underlying arrays. In the example, Mirror appears in the **Type** column to indicate that the arrays that make up the multilevel volume set are mirror sets.

- The **Total Size** column displays the total size for the multilevel stripe set. This size is the total of all the underlying arrays. In the example, the total size for array 0 (the multilevel stripe set) is the sum of the two underlying arrays (30 MB). The **Total Size** column also displays the sizes of all the underlying arrays. In the example, the size of array 63 (15.0 MB) and array 62 (15.0 MB) were specified when the mirror sets were created with the `container create mirror` command.

- The **Stripe Size** column displays the stripe size specified for the multilevel stripe set. In this example, the display shows 32 KB, the default stripe size.

- The **Usage** column displays None to indicate that the newly created multilevel stripe set does not have a file system on it. To create an NTFS or FAT file system on an array, use the `container format` command.
Adaptec SCSI RAID Software Reference Guide

- The **State** column displays Normal for arrays 0, 63, and 62 to indicate that the state of the array is normal. Note that this column appears only if you specify the */full* switch with the `container list` command.

- The **Scsi C:ID:L** column displays the SCSI device ID for the disk on which you created the multilevel stripe set. It also displays the SCSI device ID(s) for the disk(s) on which the array(s) that make up the multilevel stripe set reside. In the example, the display shows that array 63’s partitions are on SCSI disk 0:02:0. array 62’s partitions are on SCSI disk 0:03:0.

- The **Partition Offset: Size** column displays the partition offset and the size of the arrays that make up the newly created multilevel stripe set. In the example, the display shows that array 63 has partition offsets of 64.0 KB and 15.0 MB and sizes of 15.0 MB. array 62 has partition offsets of 64.0 KB and 15.0 MB and sizes of 15.0 MB. You specify the partition offset and size when you create the array.

**Related Information**

container commands:

- `container create mirror (page 5-5)`
- `container list (page 5-54)`
- `container set label (page 5-108)`
container create mvolume

To create a multilevel volume set, use the `container create mvolume` command. You can create the following types of multilevel volume sets:

- Volume set of stripe sets
- Volume set of mirror sets
- Volume set of RAID-5 sets
- Volume set of volume sets

Notes

When creating a multilevel array of volume sets on a NetWare server, you specify the container IDs (as described in the Parameters section) for the arrays from which you want to create the multilevel volume set. If NetWare is using any of these arrays, an appropriate message displays. This message indicates that one or more of the arrays you specified is in use by NetWare. The message directs you to remove any NetWare volumes and partitions from these arrays. You can then create a multilevel array of volume sets on a NetWare server.

After you create a multilevel volume set you can run the `list devices` command on the NetWare console to verify its creation and then create the necessary NetWare disk partitions and volumes.

For information on how to create partitions and volumes, see the appropriate NetWare documentation.

Syntax

```
container create mvolume [/label={string}] {container} [\{container\}...]
```

Parameters

- `{container}`
  
  Specifies the ID number (0 to 63) of the array from which you want to create the multilevel volume set.
{container}...

Specifies the ID (0 to 63) of one or more additional arrays from which you want to create the multilevel volume set. You can use up to 16 arrays. Typically, the additional arrays you specify are the same type as the first array. For example, if the first array is a stripe set then any subsequent arrays are also stripe sets.

Switches

/label{=string}

Specifies a label to be assigned to the newly created multilevel volume set. You can specify a maximum of sixteen characters for the label.

If you do not specify the switch, it defaults to no label. If you do not specify a label, you can do so later by using the container set label command.

Examples

Before creating a multilevel volume set, use the container list command to obtain information about any existing arrays.

As the following example shows, there are two existing arrays (stripe sets) on this controller at the time the multilevel volume set is created:

AAC0>container list
Executing: container list
Num Total Oth Stripe Scsi Partition
Dr Label Type Size Ctr Size Usage C:ID:L Offset:Size
-- ----- ------ ------- --- ------ ------- ------ --------------
0     Stripe 45MB 64KB None 0:02:0 64.0KB: 15.0MB
      0:03:0 64.0KB: 15.0MB
      0:04:0 64.0KB: 15.0MB
1     Stripe 15MB 64KB None 0:05:0 64.0KB: 15.0MB

The following example shows how to create a multilevel volume set from two single arrays:

AAC0> container create mvolume 0 1
Executing: container create mvolume 0 1
container 0 created

On UNIX systems, the message displayed after you execute the `container create mvolume` command includes the root special file associated with the newly created multilevel volume set.

Use the `container list` command after using the `container create mvolume` command to display information about the multilevel array of volume sets after you create it, as in the following example:

AAC0> container list
Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth</th>
<th>Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Volume</td>
<td>60.0MB</td>
<td>None</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Stripe</td>
<td>45MB</td>
<td>64KB</td>
<td>0:02:0 64.0KB: 15.0MB</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Stripe</td>
<td>15MB</td>
<td>64KB</td>
<td>0:05:0 64.0KB: 15.0MB</td>
<td></td>
</tr>
</tbody>
</table>

The following list describes the columns that contain information as a result of creating a multilevel volume set with the `container create mvolume` command:

- **Num Label** column displays the ID number (in the example, 0) of the newly created multilevel volume set and (indented to the right) the ID numbers of the arrays that make up the multilevel volume set. In the example, arrays 63 and 62 are the stripe sets that make up the multilevel volume set.

  If you specify a label when creating the multilevel volume set, it appears in this column. Because no label was specified when the multilevel volume set was created, no label appears in the column.

  On UNIX systems, the root special file associated with the multilevel volume set also appears in this column.
The **Type** column displays the type name **Volume** for the newly created multilevel volume set. The **Type** column also displays the array type for the underlying arrays. In the example, **Stripe** appears in the **Type** column to indicate that the arrays that make up the multilevel volume set are stripe sets.

The **Total Size** column displays the total size for the multilevel volume set. This size is the total of all the underlying arrays. In the example, the total size for array 0 (the multilevel volume set) is the sum of the two underlying arrays (60 MB).

The **Total Size** column also displays the sizes of all the underlying arrays. In the example, the size of array 63 (45 MB) and array 62 (15 MB) were specified when the stripe sets were created with the `container create stripe` command.

The **Stripe Size** column displays the stripe size for each of the arrays that make up the multilevel volume set. You specify the stripe size when you create stripe sets and RAID-5 sets. In the example, the stripe size is 32 KB.

The **Usage** column displays **None** to indicate that the newly created multilevel volume set does not have a file system on it. To create an NTFS or FAT file system on an array, use the `container format` command.

The **Scsi C:ID:L** column displays the SCSI device ID for the disk on which you created the multilevel volume set. It also displays the SCSI device ID(s) for the disk(s) on which the array(s) that make up the multilevel volume set reside. In the example, the display shows that array 63’s partitions reside on three SCSI disks: 0:02:0, 0:03:0, and 0:04:0. array 62’s partition resides on SCSI disk 0:05:0.

The **Partition Offset: Size** column displays the partition offset and the size of the arrays that make up the newly created multilevel volume set. In the example, the display shows that array 63 has a partition offset of 64 KB and a size of 15 MB on each of the three SCSI disks. array 62 has a partition offset of 64 KB and a size of 15 MB. You specify the partition offset and size when you create the underlying arrays.
Related Information

container commands:

- container create mmirror (page 5-9)
- container create raid5 (page 5-24)
- container create stripe (page 5-30)
- container set label (page 5-108)
container create raid5

To create a RAID-5 set, use the container create raid5 command. The RAID-5 set must have a minimum of three disks.

When creating the RAID-5 set, you must initialize the array parity by using the scrub method (the /scrub switch).

Notes

If you created a RAID-5 set you can run the list devices command on the NetWare console to verify its creation and then create the necessary NetWare disk partitions and volumes.

For information on how to create partitions and volumes, see the appropriate NetWare documentation.

Syntax

container create raid5 [/cache={boolean}]  
[/clear={boolean}]  [/stripe_size={integer}]  
[/label={string}]  [/scrub={boolean}]  
[/wait={boolean}]  {free_space} {scsi_device}...

Parameters

{free_space}

Specifies the SCSI device and its associated freespace used to create the RAID-5 set. See the free_space section on page 3-8 for more information on how to specify the freespace.

{scsi_device}...

Specifies one or more SCSI devices. A SCSI ID consists of a SCSI bus number (e.g., 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the installation guide for your controller to determine the number of buses it actually supports.

See the scsi_device section on page 3-7 for more information on how to specify the SCSI device.
container Commands

The command uses the freespace(s) from the SCSI device(s) you specify to create the RAID-5 set. The size that the command uses from these device(s) is identical to the one you specify in the free_space parameter. The minimum number of partitions in a RAID-5 set is 3, and the maximum number of partitions is 16.

Switches

cache{=boolean}

Specifies whether to enable the array’s raw array cache. You can use this switch only if a native operating system’s file system (for Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only), the NTFS or FAT file system) resides on the array. If you do not want to enable the RAID-5 set’s raw array cache when you create it, you can do so later by using the container set cache command. In fact, the container set cache command gives you more control in setting the NVRAM write-back cache.

If you set this switch to TRUE, the command causes the controller to:

- Enable the read-ahead cache setting for the specified array.

You should always enable the read-ahead cache to optimize performance, unless your application—which is unlikely—is doing completely random reads.

- Enable when protected the NVRAM write-back cache setting for the specified array. This means the controller enables the array’s NVRAM write-back cache only if a battery is present and its status is OK.

This switch defaults to FALSE, which means the command causes the controller to disable the array’s raw array cache. If you accept the default, the command

- Disables the read-ahead cache

- Disables the NVRAM write-back cache
/clear{=boolean}
   Specifies whether to set up the parity during RAID-5 creation by clearing the entire RAID-5 set. If you specify TRUE, the command sets up the parity during RAID-5 creation by clearing the RAID-5 set.

   The default is FALSE; the command does not clear the entire RAID-5 set.

   If you use neither this switch nor the /scrub switch, the command uses the scrub method by default.

   Unlike the scrub method where the drive is immediately available, the clear method does not make the drive available for use until the parity-initialize operation completes.

   If you specify TRUE for both the /scrub and /clear switches, the command displays an appropriate error message and returns to the prompt.

/stripe_size{=integer}
   Specifies the stripe size for the RAID-5 set. Valid values are 16 KB, 32 KB, and 64 KB.

   If you do not specify a value for this switch, it defaults to 64 KB.

label{=string}
   Specifies a label to be assigned to the newly created RAID-5 set. You can specify a maximum of sixteen characters for the label.

   If you do not specify the switch, it defaults to no label. If you do not specify a label, you can do so later by using the container set label command.

   Note that this label is not the label that displays in Windows Explorer. The label displayed by Windows Explorer comes from the label specified with the container format command.

/scrub{=boolean}
   Specifies whether to set up the parity during RAID-5 creation by scrubbing the RAID-5 set. If you set this switch to TRUE, the command sets up the parity by scrubbing the RAID-5 set.
container Commands

Although the drive is immediately available, it is not parity-protected until the background scrub action completes.

This switch defaults to TRUE.

If you set this switch to FALSE, the command will set up parity by clearing the RAID-5 set. In other words, setting /scrub=FALSE enables the same behavior as /clear=TRUE.

This switch is supported on the following operating systems:

- Windows NT
- Windows 2000
- Windows XP
- NetWare

For UNIX, the RAID-5 set is always scrubbed.

/wait{=boolean}

Specifies whether the command prompt returns only after the parity-protect operation completes. If you set this switch to TRUE, the command prompt returns only after the RAID-5 set is parity-protected. The scrub or zero action completes.

The default is FALSE; the command prompt returns immediately before the parity-protect operation completes.

Examples

The following example creates a RAID-5 set with the following characteristics:

- Creates the RAID-5 set on four disk drives connected to channel 0
- Specifies a freespace of 10 MB
- Uses the scrub method
- Indicates the command prompt return only after the scrub operation completes
- Specifies a stripe size of 64 KB
- Accepts the default label
AAC0>container create raid5 /stripe_size=64K /scrub

( (0,02,0),10M) (0,03,0) (0,04,0) (0,05,0)

Executing: container create raid5 /stripe_size=65,536 / scrub=TRUE ((CHANNEL=0, ID=2, LUN=0), 10,485,760 ) (CHANNEL=0, ID=3, LUN=0) (CHANNEL=0, ID=4, LUN=0) (CHANNEL=0, ID=5, LUN=0)

container 0 created

As the command executes, note that the title bar of the MS-DOS window displays the status of the command. For example:

Stat:OK!Task:101,Func:R5S Ctr:0,State:RUN 84.6%

See page 3-10 for detailed information on the status information that the command displays in the title bar as it executes the task.

On UNIX systems, the message displayed after you execute the container create raid5 command includes the root special file associated with the newly created RAID-5 set.

Use the container list command after using the container create raid5 command to display information about the RAID-5 set.

AAC0>container list

Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth</th>
<th>Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>------</td>
<td>---</td>
<td>------</td>
<td>----</td>
<td>-----------</td>
</tr>
<tr>
<td>0</td>
<td>RAID-5</td>
<td>30.0MB</td>
<td>64KB</td>
<td>None</td>
<td>0:02:0 64.0KB: 10.0MB</td>
</tr>
<tr>
<td>0</td>
<td>RAID-5</td>
<td>30.0MB</td>
<td>64KB</td>
<td>None</td>
<td>0:03:0 64.0KB: 10.0MB</td>
</tr>
<tr>
<td>0</td>
<td>RAID-5</td>
<td>30.0MB</td>
<td>64KB</td>
<td>None</td>
<td>0:04:0 64.0KB: 10.0MB</td>
</tr>
<tr>
<td>0</td>
<td>RAID-5</td>
<td>30.0MB</td>
<td>64KB</td>
<td>None</td>
<td>0:04:0 64.0KB: 10.0MB</td>
</tr>
</tbody>
</table>

The following list describes the columns that contain information as a result of creating a RAID-5 set with the container create raid5 command:

- The **Num Label** column displays the ID number of the newly created RAID-5 set, which in the example is 0.

  If you specify a label when creating the RAID-5 set, it appears in this column. Because no label was specified when the RAID-5 set was created, no label appears in the column.

  On UNIX systems, the root special file associated with the RAID-5 set also appears in this column.
container Commands

- The **Type** column displays RAID-5 to indicate that the newly created array is a RAID-5 set.
- The **Total Size** column displays the total size of the freespace available. In this example, 40.0 MB of freespace was specified, which means that this column displays 30.0 MB as available.
- The **Stripe Size** column displays the stripe size you specified as the `stripe_size` parameter, which in the example is 64 KB.
- The **Usage** column displays **None** to indicate that the newly created RAID-5 set does not have a file system on it. To create an NTFS or FAT file system on an array, use the `container format` command.
- The **State** column displays the state of an array, which in the example shows **Unprot** to indicate that the RAID-5 set is not yet redundant. This means that the command has not completed the creation of the RAID-5 set. If the `container list` command is executed after the RAID-5 set completes execution, the State column is blank.

(Note that this column appears only if you specify the `/full` switch with the `container list` command.)

- The **Scsi C:ID:L** column displays the SCSI device ID(s) for the disk(s) on which you created the RAID-5 set, which in the example are: 0:02:0, 0:03:0, 0:04:0, and 0:05:0.
- The **Partition Offset: Size** column displays the partition offset(s) and size(s) of the newly created RAID-5 set, which in the example is 64.0 KB and 10.0 MB respectively.

**Related Information**

**container commands:**

- `container list` *(page 5-54)*
- `container set cache` *(page 5-97)*
- `container set label` *(page 5-108)*
container create stripe

To create a stripe set from freespace, use the container create stripe command.

Notes

If you created a stripe set you can run the list devices command on the NetWare console to verify its creation and then create the necessary NetWare disk partitions and volumes.

For information on how to create partitions and volumes, see the appropriate NetWare documentation.

Syntax

container create stripe [/cache{=boolean}] [/stripe_size{=integer}] [/label{=string}] {free_space} [{scsi_device}...]

Parameters

{free_space}

Specifies the SCSI device and its associated freespace used to create the stripe set. See the free_space section on page 3-8 for more information on how to specify the freespace.

{scsi_device}...

Specifies one or more SCSI devices. A SCSI ID consists of a SCSI bus number (e.g., 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the installation guide for your controller to determine the number of buses it actually supports.

See the scsi_device section on page 3-7 for more information on how to specify the SCSI device. The command uses the freespace(s) from the SCSI device(s) to create the stripe set. The size from the device is identical to the one you specify in the free_space parameter.

The minimum number of partitions for a stripe set is 2, and the maximum number is 16.
Switches

/cache{=boolean}

Specifies whether to enable the array’s raw array cache. You can use this switch only if a native operating system’s file system – for Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only), the NTFS or FAT file system – resides on the array. If you do not want to enable the stripe set’s raw array cache when you create it, you can do so later by using the container set cache command. In fact, the container set cache command gives you more control in setting the NVRAM write-back cache.

If you set this switch to TRUE, the command causes the controller to enable the read-ahead cache setting for the specified array.

You should always enable the read-ahead cache to optimize performance, unless your application—which is unlikely—is doing completely random reads.

■ Enable when protected the NVRAM write-back cache setting for the specified array. This means the controller enables the array’s NVRAM write-back cache only if a battery is present and its status is OK.

This switch defaults to FALSE, which means the command causes the controller to disable the array’s raw array cache. If you accept the default, the command:

■ Disables the read-ahead cache
■ Disables the NVRAM write-back cache

/stripe_size{=integer}

Specifies the stripe size for the stripe set. Valid values are 16 KB, 32 KB, and 64 KB.

If you do not specify a value for this switch, it defaults to 64 KB.

/label{=string}

Specifies a label to be assigned to the newly created stripe set. You can specify a maximum of sixteen characters for the label.
If you do not specify the switch, it defaults to no label. If you do not specify a label, you can do so later by using the `container set label` command.

Note that this label is not the label that displays in Windows Explorer. The label displayed by Windows Explorer comes from the label specified with the `container format` command.

**Examples**

Before creating a stripe set, use the `disk show space` command to obtain information about the available SCSI devices, as in the following example:

```
AAC0>disk show space
Executing: disk show space
Scsi C:ID:L Usage Size
----------- --------- -------------
 0:00:0 Free 64.0KB: 11.0MB
 0:01:0 Free 64.0KB: 11.0MB
 0:02:0 Free 64.0KB: 49.0MB
 0:03:0 Free 64.0KB: 49.0MB
 0:04:0 Free 64.0KB: 49.0MB
 0:05:0 Free 64.0KB: 49.0MB
 0:06:0 Free 64.0KB: 11.0MB
 0:08:0 Free 64.0KB: 11.0MB
```

The example list shows that there are eight SCSI disks available to create the stripe set. There must be enough contiguous freespace on all the specified drives.

The following example shows how to create a stripe set with the following characteristics:

- 15 MB of freespace on the (0,2,0) SCSI disk
- The default stripe size of 64 KB
- Two freespaces of 15 MB on the (0,3,0) and (0,4,0) SCSI disks

```
AAC0>container create stripe ((0,2,0), 15M) (0,3,0) (0,4,0)
Executing: container create stripe ((CHANNEL=0,ID=2,LUN=0),15,728,640)
 (CHANNEL=0,ID=3,LUN=0) (CHANNEL=0,ID=4,LUN=0)
container 0 created
```

On UNIX systems, the message displayed after you execute the `container create stripe` command includes the root special file associated with the newly created stripe set.
Use the `container list` command after using the `container create stripe` command to display information about the stripe set, as in the following example:

```
AAC0>container list
Executing: container list
```

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following list describes the items in the display that contain information as the result of creating a stripe set with the `container create stripe` command:

- The **Num Label** column displays the ID number of the newly created stripe set, which in the example is 0.

  If you specify a label when creating the stripe set, it appears in this column. Because no label was specified when the stripe set was created, no label appears in the column.

  On UNIX systems, the root special file associated with the array also appears in this column.

- The **Type** column displays the type `Stripe`, to indicate that the newly created array is a stripe set.

- The **Total Size** column displays the size of the freespace that makes up the stripe set. In this example, the total size consists of the freespace (15.0 MB) specified with SCSI device (0,2,0) and equal sizes associated with SCSI devices (0,3,0), and (0,4,0) for a total of 45.0 MB.

- The **Stripe Size** column displays the stripe size you specified for the stripe set. In this example, the stripe size is the default (32 KB).

- The **Usage** column displays **None** to indicate that the newly created stripe set does not have a file system on it. To create an NTFS or FAT file system on an array, use the `container format` command.
Adaptec SCSI RAID Software Reference Guide

- The **Scsi C:ID:L** column displays the SCSI device ID(s) for the disk(s) whose associated freespaces you used to create the stripe set. In this example, the display shows 0:02:0, 0:03:0, and 0:04:0.

- The **Partition Offset: Size** column displays the partition offset(s) and the size(s) for the disk(s) whose associated freespaces you used to create the stripe set. In this example, the display shows 64.0KB:15MB, 64.0KB:15.0MB, and 64.0KB:15.0MB.

**Related Information**

**container commands:**
- container create mstripe (page 5-14)
- container create mvolume (page 5-19)
- container list (page 5-54)
- container set cache (page 5-97)
- container set label (page 5-108)

**disk commands:**
- disk show space (page 7-25)
container Commands

container create volume

To create a volume set from freespace, use the container create volume command.

Notes

If you created a volume set you can run the list devices command on the NetWare console to verify its creation and then create the necessary NetWare disk partitions and volumes.

For information on how to create partitions and volumes, see the appropriate NetWare documentation.

Syntax

container create volume [/cache{=boolean}] [/label{=string}] {scsi_device},{free_space} [{scsi_device},{free_space}...]

Parameters

{scsi_device}

Specifies the ID for the SCSI device whose freespace you want to use for creating the volume set. A SCSI ID consists of a SCSI bus number (e.g., 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the installation guide for your controller to determine the number of buses it actually supports.

See the scsi_device section on page 3-7 for more information on how to specify the SCSI device.

Note that you must explicitly specify the entire ID for the SCSI device (the SCSI channel number, device ID, and device logical unit number).

{free_space}

Specifies the freespace used to create the volume set on the specified SCSI device. See the free_space section on page 3-8 for more information on how to specify the freespace.
Adaptec SCSI RAID Software Reference Guide

{scsi_device},{free_space}...

Specifies any additional SCSI devices and associated freespaces used to create the volume set. A volume set can have a maximum of 16 partitions (or freespaces, since each freespace becomes a partition).

Note that you must explicitly specify the entire ID for any additional SCSI devices (the SCSI channel number, device ID, and device logical unit number).

Switches

/cache{=boolean}

Specifies whether to enable the array’s raw array cache. You can use this switch only if a native operating system’s file system (for Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only), the NTFS or FAT file system) resides on the array. If you do not want to enable the volume set’s raw array cache when you create it, you can do so later by using the container set cache command. In fact, the container set cache command gives you more control in setting the NVRAM write-back cache.

If you set this switch to TRUE, the command causes the controller to

■ Enable the read-ahead cache setting for the specified array.

You should always enable the read-ahead cache to optimize performance, unless your application—which is unlikely—is doing completely random reads.

■ Enable when protected the NVRAM write-back cache setting for the specified array. This means the controller enables the array’s NVRAM write-back cache only if a battery is present and its status is OK.

This switch defaults to FALSE, which means the command causes the controller to disable the array’s raw array cache. If you accept the default, the command

■ Disables the read-ahead cache

■ Disables the NVRAM write-back cache
container Commands

/label={=string}

Specifies a label to be assigned to the newly created volume set. You can specify a maximum of sixteen characters for the label.

If you do not specify the switch, it defaults to no label. If you do not specify a label, you can do so later by using the container set label command.

Note that this label is not the label that displays in Windows Explorer. The label displayed by Windows Explorer comes from the label specified with the container format command.

Examples

Before creating a volume set, use the disk show space command to obtain information about the available SCSI devices, as in the following example:

AAC0>disk show space

Executing: disk show space

Scsi C:ID:L Usage     Size
----------- --------- -------------
0:00:0     Free 64.0KB:  11.0MB
0:01:0     Free 64.0KB:  11.0MB
0:02:0     Free 64.0KB:  49.0MB
0:03:0     Free 64.0KB:  49.0MB
0:04:0     Free 64.0KB:  49.0MB
0:05:0     Free 64.0KB:  49.0MB
0:06:0     Free 64.0KB:  11.0MB
0:08:0     Free 64.0KB:  11.0MB

The example list shows that there are eight SCSI disks available to create the volume set.

The following example creates a volume set on SCSI disk (0,2,0) with a freespace of 15 MB:

AAC0>container create volume ((0,2,0), 15M)

Executing: container create volume ((CHANNEL=0,ID=2,LUN=0),15,728,640)
container 0 created

On UNIX systems, the message displayed after you execute the container create volume command includes the root special file associated with the newly created volume set.
Use the `container list` command after executing the `container create volume` command to display information about the volume set, as in the following example:

```
AAC0>container list
Executing: container list
```

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr</td>
<td>Label</td>
<td>Type</td>
<td>Size</td>
<td>Ctr Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Size</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>------------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>0</td>
<td>Volume 15.0MB</td>
<td>None</td>
<td>0:02:0</td>
<td>64.0KB: 15.0MB</td>
</tr>
</tbody>
</table>

The following list describes the columns that contain information as the result of creating a volume set with the `container create volume` command:

- **The Num Label** column displays the ID number of the newly created volume set, which in the example is 0.
  
  If you specify a label when creating the volume set, it appears in this column. Because no label was specified when the volume set was created, no label appears in the column.

  On UNIX systems, the root special file associated with the array also appears in this column.

- **The Type column** displays Volume to indicate that the newly created array is a volume set.

- **The Total Size** column displays the value(s) specified in the `free_space` parameter(s), which in the example is 15.0 MB.

- **The Usage column** displays None to indicate that the newly created volume set does not have a file system on it. To create an NTFS or FAT file system on an array, use the `container format` command.

- **The Scsi C:ID:L** column displays the SCSI device ID for the disk on which you created the volume set, which in the example is 0:02:0.

- **The Partition Offset: Size** column displays the partition offset and the size of the newly created volume set’s partition, which in the example are 64.0 KB and 15.0 MB. The size is the size you specified in the `free_space` parameter(s).
Related Information

container commands:
- container extend volume (page 5-50)
- container format (page 5-54)
- container list (page 5-54)
- container promote (page 5-69)
- container set cache (page 5-97)
- container set label (page 5-108)

disk commands:
- disk show space (page 7-25)
container delete

To delete an array from the currently opened controller, use the container delete command.

Notes

If you are deleting an array on a NetWare system, you must first go to the NetWare console and remove the corresponding volume and partition. For information on how to perform these operations, see the appropriate NetWare documentation.

After you delete an array on a NetWare server, you must run the list devices command on the NetWare console so that the corresponding virtual disk is removed from the system’s internal device table.

Syntax

container delete [/always={boolean}] [/unconditional={boolean}]{container}

Parameters

{container}

  Specifies the ID number (0 to 63) of the array to delete. The array can be any array on the controller.

  You can never delete an array if files are open on it.

  for the syntax associated with specifying a partner and a container ID.

Switches

/always={boolean}

  Specifies whether to delete the array, even if it has a file system. If you specify TRUE, the command deletes the array even if it has a file system. If you specify FALSE, the command deletes the array only if it has no file system.

  This switch defaults to FALSE. In both cases, all user files must be closed; the /always switch cannot override this restriction.
container Commands

/unconditional{=boolean}

Specifies whether to delete the array, even if the array has open files on it. If you specify TRUE, the command deletes the array even if it has open files on it.

The switch defaults to FALSE (that is, the container delete command does not delete an array that has open files on it).

WARNING: Unconditionally deleting an array that is in use can cause a system crash under some circumstances.

Examples

Before deleting an array, use the container list command to obtain information about any existing arrays. As the following example shows, there is an array 0 (a multilevel volume set) on this controller:

AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr</td>
<td>Label</td>
<td>Type</td>
<td>Size</td>
<td>Ctr Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F:</td>
<td>0</td>
<td>Volume</td>
<td>40.0MB</td>
<td>NTFS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Volume 10.0MB</td>
<td>0:02:0</td>
<td>64.0KB:  10.0MB</td>
</tr>
<tr>
<td></td>
<td>62</td>
<td>Volume 15.0MB</td>
<td>0:02:0</td>
<td>64.0KB:  10.0MB</td>
</tr>
<tr>
<td></td>
<td>61</td>
<td>Volume 15.0MB</td>
<td>0:04:0</td>
<td>64.0KB:  10.0MB</td>
</tr>
</tbody>
</table>

The following example shows how to delete array 0 using the / always switch to indicate a delete even though the array has a file system:

AAC0>container delete /always=TRUE 0
Executing: container delete /always=TRUE 0

Use the container list command after using the container delete command to confirm that the command actually deleted the specified array, as in the following example:

AAC0>container list
Executing: container list
No containers found.
Note that in the example, the deletion of array 0 caused the deletion of all the underlying (hidden) arrays (arrays 63, 62, and 61).

Related Information

container commands:

- container create mirror (page 5-5)
- container create mmirror (page 5-9)
- container create mstripe (page 5-14)
- container create mvolume (page 5-19)
- container create raid5 (page 5-24)
- container create stripe (page 5-30)
- container create volume (page 5-35)
- container list (page 5-54)
container Commands

container extend file_system

To extend a file system so that it uses all of the space in an array, use the container extend file_system command. This command allows you to extend the NTFS file system.

Typically, you use this command after extending an array (by adding a level to it with the container add_level command and, possibly, by extending it with the container extend mvolume command).

If you extend an NTFS file system, you must reboot your system in order for the extension to take effect.

Notes

The following notes relate to using the container extend file_system command to extend an NTFS file system:

■ If you extend an NTFS file system, the command displays an appropriate message indicating that you need to reboot the system to show the new space. If you check the Windows Event Log, a message similar to the following appears:

    The file system structure on the disk is corrupt and unusable. Please run the chkdsk utility on the device \Device\Harddisk0\Partition1 with label "".

    The previous message always appears in the Windows Event Log even if the file system extend operation is successful. You do not need to run the chkdsk utility after a successful file system extend operation.

■ You cannot extend an NTFS file system that resides on a boot array.
**Command And Switch Availability**

This command and its associated switches (if any) are supported on the following operating systems:

- Windows NT
- Windows 2000 (basic disk only)
- Windows XP (basic disk only)

**Syntax**

```
container extend file_system {container}
```

**Parameters**

 `{container}`

Specifies the ID number (0 to 63) of the array whose file system you want to extend.

**Examples**

Typically, you would use the `container extend file_system` command after adding a level to an array and, perhaps, after extending a multilevel volume set.

Before extending a file system, use the `container list` command to obtain information about any existing arrays:

```
AAC0>container list
Executing: container list
```

```
Num Total Oth Stripe Scsi Partition
Dr Label Type Size Ctr Size Usage C:ID:L Offset:Size
-- ----- ------ ------ --- ------ ------- ------ --------------
E: 0 Volume 300MB NTFS
 63 Volume 100MB 1:00:0 64.0KB: 100MB
 62 Volume 100MB 1:01:0 64.0KB: 100MB
 61 Volume 100MB 1:02:0 64.0KB: 100MB
```

The following list describes the sequence that caused the previous example to display:

1. Create a volume set of 100 MB on disk (1,0,0) with the `container create volume` command.
2. Add a level to the volume set created in Step 1 with the `container add_level` command.
Assign a drive letter to the volume set created in Step 1 with the `container assign drive_letter` command.

4 Create an NTFS file system on the volume set created in Step 1 with the `container format` command.

5 Create a second volume set of 100 MB on disk (1,1,0) with the `container create volume` command.

6 Create a third volume set of 100 MB on disk (1,2,0) with the `container create volume` command.

7 Used the `container extend mvolume` command to add the arrays created in Steps 5 and 6 to the array created in Step 1.

The following example extends the NTFS file system to make use of the additional arrays:

```
AAC0>container extend file_system 0
Executing: container extend file_system 0
The system has been marked to expand the file system on the next reboot.
Reboot the system to get the file system to expand to show the new space.

Use the `container list` command after using the `container extend file_system` command to display information about the array after you extend a file system. Note that there is no change in the display as a result of using the `container extend file_system` command.
```

**Related Information**

container commands:

- `container format` (page 5-54)
container extend mvolume

To extend a multilevel volume set by adding one or more arrays to it, use the container extend mvolume command. Any file system on the multilevel volume set remains intact, and can be extended to include the added space.

Command And Switch Availability

This command and its associated switches (if any) are supported on the following operating systems:

- Windows NT
- Windows 2000 (basic disk only)
- Windows XP (basic disk only)

Syntax

commmand extend mvolume {container_to_extend} {container} [{container} ...]

Parameters

{container_to_extend}

Specifies the ID number (0 to 63) of the array to extend. Typically, this array is a multilevel volume set.

{container}

Specifies the ID number (0 to 63) of the array to add to the previously specified multilevel volume set. If a file system exists on this array, the command displays an appropriate error message and does not allow you to create the multilevel volume set. This prevents the loss of any data residing in files on the array.
{container}...

Specifies the ID number (0 to 63) of the array or arrays to add to the previously specified multilevel volume set. The previous file system information applies to these additional arrays as well.

Examples

Before extending a multilevel volume set, use the container list command to obtain information about any existing arrays. As the following example shows, there is an array 0 (a multilevel volume set) on this controller. In addition, the example shows array 1 and array 2 (both volume sets created with the container create volume command).

AAC0>container list

Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Label</td>
<td>Type</td>
<td>Size</td>
<td>Ctr Size</td>
<td>Usage</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>F:</td>
<td>Volume</td>
<td>10MB</td>
<td>None</td>
<td>64.0KB:</td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Volume</td>
<td>15MB</td>
<td>None</td>
<td>64.0KB:</td>
</tr>
<tr>
<td>2</td>
<td>Volume</td>
<td>15MB</td>
<td>None</td>
<td>64.0KB:</td>
</tr>
</tbody>
</table>

The following example extends a multilevel volume set (array 0) by adding arrays 1 and 2 (which are both volume sets):

AAC0>container extend mvolume 0 1 2

Executing: container extend mvolume 0 1 2

container 0 extended

As the command executes, note that the title bar of the DOS window displays the status of the command. For example:

Stat:OK!Task:102,Fnc:FSX Ctr:0,State:RUN 84.3%

See page 3-10 for detailed information on the status information that the command displays in the title bar as it executes the task.

Use the container list command after using the container extend mvolume command to display information about the
multilevel array of volume sets after you extend it, as in the following example:

AAC0>container list

Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total Size</th>
<th>Oth Stripe</th>
<th>Scsi C:ID:L</th>
<th>Offset:Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>40MB</td>
<td>NTFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>10MB</td>
<td>0:02:0</td>
<td>64.0KB:</td>
<td>10.0MB</td>
</tr>
<tr>
<td>62</td>
<td>15MB</td>
<td>0:03:0</td>
<td>64.0KB:</td>
<td>15.0MB</td>
</tr>
<tr>
<td>61</td>
<td>15MB</td>
<td>0:04:0</td>
<td>64.0KB:</td>
<td>15.0MB</td>
</tr>
</tbody>
</table>

The following list describes the change to the display as the result of extending a multilevel array with the `container extend mvolume` command:

- **The Num Label** column continues to display the ID number (0) of the volume set previously created with the `container create volume` command and the ID number (63) of the volume set previously created with the `container add_level` command. In addition, the column displays the ID numbers (in this example, 62 and 61) of the volume sets created as a result of the `container extend mvolume` command.

  If you specified labels when creating the volume sets, they appear in this column. Because no labels were specified when the volume sets were created, no labels appear in the column.

- **The Type** column continues to display Volume to indicate that the arrays previously created with the `container create volume` and the `container add_level` commands are volume sets. In addition, the column displays Volume for the volume sets created as a result of the `container extend mvolume` command.

- **The Total Size** column displays a new total size, taking into account the freespaces associated with the volume sets created as a result of the `container create volume` and the `container add_level` commands.

- **The Scsi C:ID:L** column displays the SCSI IDs for the devices on which the volume sets were created, which in the example are 0:02:0, 0:03:0, and 0:04:0.
container Commands

- The **Partition Offset:Size** column displays the offsets and sizes for the partition(s) on which the volume sets were created, which in the example are 64.0KB:10MB, 64.0KB:15.0MB, and 64KB:15MB.

If a partition is dead, the “:” (colon) in the **Partition Offset:Size** column changes to a “!” (exclamation point). See the disk remove dead_partitions (page 7-9) command for more information on dead partitions.

**Related Information**

container commands:

- container add_level (page 5-3)
- container create mvolume (page 5-19)
- container create volume (page 5-35)
- container extend file_system (page 5-43)
- container list (page 5-54)

disk commands:

- disk remove dead_partitions (page 7-9)
container extend volume

To extend a volume set by adding freespace to it, use the container extend volume command. The file system on the volume set remains intact and can be extended to include the added space.

Command And Switch Availability

This command and its associated switches (if any) are supported on the following operating systems:

- Windows NT
- Windows 2000 (basic disk only)
- Windows XP (basic disk only)

Syntax

container extend volume {container}
[ {free_space} ] [ {free_space} ... ]

Parameters

{container}

Specifies the ID number (0 to 63) of the array (volume set) to extend.

{free_space}

Specifies the SCSI device and its associated freespace used to extend the specified array (volume set). See the scsi_device section on page 3-7 for more information on how to specify the SCSI device. See the free_space section on page 3-8 for more information on how to specify the freespace.

{free_space}...

Specifies a SCSI device or devices and associated freespace or freespaces used to extend the specified array (volume set). You can specify a maximum of 16 freespace elements. If you exceed 16 freespace elements, the command displays an appropriate error message.
Examples

Before extending a volume set, use the \texttt{container list} command to obtain information about any existing arrays. As the following example shows, there is an array (volume set) 1 on this controller:

AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr</td>
<td>Label</td>
<td>Type</td>
<td>Ctr</td>
<td>Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Size</td>
<td>Usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C:ID:L Offset:Size</td>
</tr>
<tr>
<td>E: 1</td>
<td>Volume1</td>
<td>NTFS</td>
<td>2:02:0</td>
<td>200MB: 100MB</td>
</tr>
</tbody>
</table>

Before extending the volume set, you might want to use the \texttt{disk show space} command to display space usage information on the SCSI devices from which you plan to add freespace. The following example extends a volume set by adding freespace from two SCSI devices:

AAC0>container extend volume 1 ((2,0,0), 32M) ((2,1,0), 32M)
Executing: container extend volume 1

```plaintext
((CHANNEL=2,ID=0,LUN=0),33,554,432)
((CHANNEL=2,ID=1,LUN=0),33,554,432)
```

container 1 expanded.

As the command executes, note that the title bar of the DOS window displays the status of the command. For example:

Stat:OK!,Task:101,Func:FSX Ctr:0,State:RUN 83.8%

See page 3-10 for detailed information on the status information that the command displays in the title bar as it executes the task.
Use the `container list` command after using the `container extend volume` command to display information about the volume set after you extend it, as in the following example:

```
AAC0>container list
Executing: container list
```

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr</td>
<td>Label</td>
<td>Type</td>
<td>Size</td>
<td>Ctrl Size</td>
</tr>
<tr>
<td>--</td>
<td>-----</td>
<td>----------</td>
<td>-----</td>
<td>---------</td>
</tr>
<tr>
<td>E: 1</td>
<td>Volume</td>
<td>NTFS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>164MB</td>
<td></td>
<td></td>
<td>2:00:0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2:01:0</td>
</tr>
</tbody>
</table>

The following list describes the change to the display as the result of extending a volume set with the `container extend volume` command:

- The **Total Size** column displays a new size, taking into account the value(s) specified for the `free_space` parameters. In the example the new size is 164 MB.
- The **Usage** column continues to display NTFS, indicating that array 1 has an NTFS file system on it.
- The **Scsi C:ID:L** column displays the SCSI ID for the disk on which the original volume set was created. It also displays the SCSI ID(s) for the disk(s) from which you specified the freespace. In the example, these disks are 2:00:0 and 2:01:0.
- The **Partition Offset:Size** column displays the partition offset(s) and size(s) for the partition(s) associated with the extended volume set. In the example the partition offsets and sizes are 64.0 KB and 32.0 MB.

If a partition is dead, the “:” (colon) in the **Partition Offset:Size** column changes to a “!” (exclamation point). See the `disk remove dead_partitions` (page 7-9) command for more information on dead partitions.
Related Information

container commands:

- container create volume (page 5-35)
- container list (page 5-54)

disk commands:

- disk remove dead_partitions (page 7-9)
- disk show space (page 7-25)
**container list**

To display information about one or all arrays on the controller, use the `container list` command. The display contains such information as the container’s ID number and other useful information. Typically, you use the `container list` command to obtain specific information about arrays prior to using other array-related commands.

**Syntax**

```
container list [/all{=boolean}] [/full{=boolean}] [{container}]
```

**Parameters**

{container}

Specifies the ID number (0 to 63) of the array whose information you want to display. To display information about all of the arrays on the system, omit the ID number from the command.

**Switches**

/all{=boolean}

Specifies whether to list all arrays on the system. If you specify TRUE, the command displays all arrays on the system. If you specify FALSE, the command displays only the array you specify in the command.

This switch defaults to FALSE if you specify a container. Otherwise, the switch defaults to TRUE.

/full{=boolean}

Specifies whether to display detailed information. If you specify TRUE, the command displays detailed information. If you specify FALSE, the command does not display detailed information.

This switch defaults to FALSE.
Examples

The following example shows how to list nondetailed information about all arrays on the system:

AAC0>container list

Executing: container list

<table>
<thead>
<tr>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Size</th>
<th>Ctr</th>
<th>Size</th>
<th>Usage</th>
<th>C:ID:L Offset:Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Volume</td>
<td>15.0MB</td>
<td>None</td>
<td>0:02:0</td>
<td>64.0KB</td>
<td>15.0MB</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Stripe</td>
<td>45.0MB</td>
<td>32KB</td>
<td>None</td>
<td>0:02:0</td>
<td>15.0MB</td>
<td></td>
</tr>
</tbody>
</table>

The detailed container list display contains the previous columns of information plus the following columns:

- State
- RO
- Lk
- Task
- Done%
- Ent
- Creation Date
- Creation Time
- Boot Device
- System Files

The following sections provide brief descriptions of each container list column.
The Dr Column
On Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only) systems, this column displays a blank space if you did not assign a drive letter to the array. Otherwise, the column contains the letter associated with the array. Use the container assign drive_letter command to assign a drive letter to an array.

The Dr column does not appear on UNIX or NetWare systems.

The Num Label Column
This column displays the container ID (a number from 0 to 63 inclusive). Typically, the CLI container create-related commands automatically assign an ID to an array. However, you can renumber an array with the container move command.

This column also displays the label assigned to the array when the array was created. If no label was assigned to the array then no label appears in the column. You can assign labels with the following commands:

- container create mstripe
- container create mvolume
- container create raid5
- container create stripe
- container create volume
- container set label

If your controller is running on a UNIX operating system, then the Num Label column also displays a root special file. On UNIX systems, arrays are associated with root special files not drive letters.

See your UNIX documentation for information on how to mount the array or to create a file system.
The Type Column

This column displays the type of array. Table 5-1 describes the type values that can display in the Type column.

Table 5-1. Container Types

<table>
<thead>
<tr>
<th>container Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirror</td>
<td>The container is a mirror set.</td>
</tr>
<tr>
<td>Stripe</td>
<td>The container is a stripe set.</td>
</tr>
<tr>
<td>Volume</td>
<td>The container is a volume set.</td>
</tr>
<tr>
<td>RAID-5</td>
<td>The container is a RAID-5 set.</td>
</tr>
<tr>
<td>Reconf</td>
<td>The container was reconfigured.</td>
</tr>
</tbody>
</table>

The CLI automatically assigns the array type as a result of creating arrays with the container create-related commands.

The CLI assigns the array type Reconf when the array is reconfigured from one array type to another. The container reconfigure command provides switches that allow you to reconfigure an array into specific array types.

The Reconf array type does not appear on UNIX systems.

The Total Size Column

This column displays the size of the array. You specify this size when creating the array with one of the container create-related commands.
Adaptec SCSI RAID Software Reference Guide

The Stripe Size Column

This column displays the stripe size for the array. You specify the stripe size when using the `container create mstripe`, `container create raid5`, and `container create stripe` commands.

The Usage Column

This column displays information about the data on or the status of the array. Specifically, the column can display the items listed in Table 5-2.

Table 5-2. Container Usage Items

<table>
<thead>
<tr>
<th>Item</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAT</td>
<td>The FAT file system resides on this array.</td>
</tr>
<tr>
<td>Multipart</td>
<td>A file system resides on a multi-partition array. A multi-partition array is an array that has multiple operating system or DOS partitions.</td>
</tr>
<tr>
<td>NetWare</td>
<td>The array resides in a NetWare environment.</td>
</tr>
<tr>
<td>None</td>
<td>No file system resides on this array.</td>
</tr>
<tr>
<td>NTFS</td>
<td>The NTFS file system resides on this array.</td>
</tr>
<tr>
<td>Open</td>
<td>For UNIX, there is a mounted file system on this array.</td>
</tr>
<tr>
<td>Uncfged</td>
<td>The array is a phantom array or the array is offline.</td>
</tr>
<tr>
<td>Unknown</td>
<td>An unknown file system resides on this array. For UNIX, the operating system recognizes this array, and there has not been a query (e.g., mount, fdsk, read, write) on the array.</td>
</tr>
<tr>
<td>UnMap’d</td>
<td>The array is unusable and cannot be mounted.</td>
</tr>
<tr>
<td>Valid</td>
<td>The UNIX operating system recognized this array, and there has been a query (e.g., mount, fdsk, read, write) on the array.</td>
</tr>
</tbody>
</table>
container Commands

The Scsi C:ID:L Column
This column displays the SCSI channel number, the SCSI ID, and the SCSI logical unit number for the SCSI disk or disks on which the array was created.

The Partition Offset:Size Column
This column displays the offset and size for the underlying partitions.
If a partition is dead, the “:” (colon) in the Partition Offset:Size column changes to a “!” (exclamation point). See the disk remove dead_partitions (page 7-9) command for more information on dead partitions.

The State Column
This column displays information about the state of the array. Specifically, the column can display the items listed in Table 5-3.

Table 5-3. Container State Items

<table>
<thead>
<tr>
<th>Container State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copy</td>
<td>Indicates that the array is the copy array in an array reconfiguration operation.</td>
</tr>
<tr>
<td>Create</td>
<td>Indicates the creation of a mirror set.</td>
</tr>
<tr>
<td>Dest</td>
<td>Indicates that the array is the destination array in an array reconfiguration operation.</td>
</tr>
<tr>
<td>Normal</td>
<td>Indicates that the mirror set is in the normal state.</td>
</tr>
<tr>
<td>Raid5</td>
<td>Indicates that the array is a RAID-5 set in an array reconfiguration operation.</td>
</tr>
<tr>
<td>Source</td>
<td>Indicates that the array is the source array in an array reconfiguration operation.</td>
</tr>
<tr>
<td>Temp</td>
<td>Indicates that the array is a temporary array in an array reconfiguration operation.</td>
</tr>
<tr>
<td>Unprot</td>
<td>The RAID-5 set is not redundant. The Unprot array state typically displays during the creation of the RAID-5 set. Upon completion of RAID-5 set creation, the CLI replaces the Unprot state with the Normal state.</td>
</tr>
</tbody>
</table>
Adaptec SCSI RAID Software Reference Guide

The RO Column

This column displays the letters RO if the array is read-only. Otherwise, if the array is read-write the column displays a blank space. You can explicitly make an array read-only and read-write with the container readonly and container readwrite commands.

Some CLI commands cause an array to temporarily become read-only without the use of the container readonly command.

The Lk Column

This column displays the letter L if the array is locked. Otherwise, if the array is not locked, the column displays a blank space. You can explicitly lock and unlock an array with the container lock and container unlock commands.

Some CLI commands (during their execution) cause the array to become locked. Typically these commands unlock the array upon completing execution.

The Task Column

This column displays the task or tasks running on a specified array or SCSI disk. Specifically, the column can display the items listed in Table 5-4.

Table 5-4. Task Types

<table>
<thead>
<tr>
<th>Task</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>A create mirror set or create multilevel mirror set task is running on the specified array. When the create mirror set or create multilevel mirror set task completes, the specified array is a mirror set or a multilevel array of mirror sets. The create a mirror set or create a multilevel mirror set task runs as a result of using the container create mirror or container create mmirror command.</td>
</tr>
<tr>
<td>FmtFAT</td>
<td>An array format FAT file system task is running on the specified array. The format FAT file system task runs as a result of using the container format command with the /file_system switch set to FAT.</td>
</tr>
</tbody>
</table>
### Table 5-4. Task Types (Continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>FmtNTFS</td>
<td>An array format NTFS file system task is running on the specified array. The format NTFS file system task runs as a result of using the container format command with the /file_system switch set to NTFS.</td>
</tr>
<tr>
<td>Rebuild</td>
<td>A rebuild task is running on the specified array. Typically, the rebuild task runs when the controller is in a rebuild for a redundant array (RAID-5 set, mirror set, or multilevel array of mirror sets).</td>
</tr>
<tr>
<td>Reconfg</td>
<td>An array reconfigure task is running on the specified array. When the array reconfigure task completes, the specified array becomes a different array (for example, from a volume set to a stripe set). The array reconfigure task runs as a result of using the container reconfigure command.</td>
</tr>
<tr>
<td>Scrub</td>
<td>A scrub task is running on the specified redundant array. When the scrub task completes, the specified redundant array has reconstructed data on one partition based on data found on the other partition (for mirror sets and multilevel arrays of mirror sets). Or, the specified redundant array recalculates and replaces, if necessary, the parity information (for RAID-5 sets). The scrub task runs as a result of the container scrub command. The scrub task also runs as a result of the container create raid5 command with the /scrub switch specified.</td>
</tr>
<tr>
<td>Verify</td>
<td>A verify with no repair of bad blocks task is running on the specified SCSI disk. When the verify with no repair of bad blocks task completes, the specified SCSI disk’s blocks were verified without repairing any detected defects. The verify with no repair of bad blocks task runs as a result of using the disk verify command without specifying the /repair switch.</td>
</tr>
<tr>
<td>VfyRepl</td>
<td>A verify with repair of bad blocks task is running on the specified SCSI disk. When the verify with repair of bad blocks task completes, the specified SCSI disk’s blocks are verified with repairs. The verify with repair of bad blocks task runs as a result of using the disk verify command with the /repair switch.</td>
</tr>
</tbody>
</table>
Adaptec SCSI RAID Software Reference Guide

Table 5-4. Task Types (Continued)

<table>
<thead>
<tr>
<th>Task</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>A clear disk task is running on the specified SCSI disk. When the clear disk task completes, the specified SCSI disk is cleared (that is, all data is erased and cannot be recovered). The clear disk task runs as a result of using the <code>disk zero</code> command.</td>
</tr>
</tbody>
</table>

**The Done % Column**

This column displays a running percentage value that indicates the progress of the currently running task. The display shows the percentage in tenths of a percent increments. The currently running task is complete when the Done % column displays 100%.

**The Ent Column**

This column displays the number of elements associated with each array. The maximum is 16 elements.

**The Creation Date and Creation Time Columns**

The Creation Date column displays the date on which you created the array. The following example shows an example of a date that can appear in this column:

082999

As the example shows, the command displays the date in the form `mmddyy` where

- `mm` is a two-digit number that indicates the month in which you created the array. For example, 01 indicates the month of January, 12 indicates the month of December, and so forth.
- `dd` is a two-digit number that indicates the day of the month in which you created the array. For example, 29 indicates the 29th day.
- `yy` indicates the year you created the array. For example, 97 indicates the array was created in the year 1997.

The Creation Time column displays the time in 24-hour format at which you created the array. The following example shows an example of a time that can appear in this column:

Zero

A clear disk task is running on the specified SCSI disk. When the clear disk task completes, the specified SCSI disk is cleared (that is, all data is erased and cannot be recovered). The clear disk task runs as a result of using the `disk zero` command.
As the example shows, the command displays the time in the form \texttt{hhmmss} where

- \texttt{hh} is a two-digit number that indicates the hour at which you created the array.
- \texttt{mm} is a two-digit number that indicates the minute at which you created the array.
- \texttt{ss} is a two-digit number that indicates the second at which you created the array.

**The Boot Device Column**

This column displays a value that indicates whether the array resides on the boot device. An X appears in the column if the array resides on the boot device. Otherwise, if the array does not reside on the boot device, no value appears in the column.

The \textbf{Boot Device} column does not appear on UNIX systems.

**The System Files Column**

This column displays a value that indicates whether the array resides on the system device. An X appears in the column if the array resides on the system device. Otherwise, if the array does not reside on the system device, no value appears in the column.
Related Information

container commands:
- `container create mirror` (page 5-5)
- `container create mstripe` (page 5-14)
- `container create raid5` (page 5-24)
- `container create stripe` (page 5-30)
- `container scrub` (page 5-94)

disk commands:
- `disk verify` (page 7-28)
- `disk zero` (page 7-30)
container Commands

container lock

Caution: Use the container lock command only under the direction of technical support.

To lock an array into volatile memory space on the currently opened controller, use the container lock command. When an array is locked into volatile memory space, the container reconfigure command has no effect. A locked array cannot be moved, deleted, made read-only, or used to create a multilevel array.

Syntax
container lock {container}

Parameters
{container}
- Specifies the ID number (0 to 63) of the array to lock into volatile memory space.

Examples
Before locking an array, use the container list command (with the /full switch) to obtain information about any existing arrays. As the following example shows, there is an array 0 (a volume set) on this controller. Note that the Lk column is blank:

AAC0>container list /full
Executing: container list /full=TRUE

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Ctr Size</th>
<th>Usage</th>
<th>C:I</th>
<th>D</th>
<th>L</th>
<th>Lk</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 0</td>
<td>Volume</td>
<td>NTFS</td>
<td>10.0MB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the example eliminates some items in the container list display so that you can see an example of the Lk column.

The following example locks array 0 into volatile memory space:

AAC0>container lock 0
Executing: container lock 0
Use the container list command (with the /full switch) after using the container lock command to display information about the array you just locked, as in the following example:

```
AAC0>container list /full
Executing: container list /full=TRUE
```

```
<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>0th Stripe</th>
<th>Scsi</th>
<th>Dr Label</th>
<th>Type</th>
<th>Ctr Size</th>
<th>Usage</th>
<th>C:ID:L</th>
<th>Lk</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 0</td>
<td>Volume 10.0MB</td>
<td>NTFS</td>
<td>0:02:0</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Note that the example eliminates some items in the container list display so that you can see an example of the Lk column.

As the result of locking an array (in this example, array 0) with the container lock command, the Lk column displays L (instead of a blank) to indicate that the specified array is now locked.

**Related Information**

container commands:

- container list (page 5-54)
- container unlock (page 5-121)
container Commands

container move

To renumber an array, use the container move command. If another array already has the new number, the command returns an error.

Notes

A controller currently supports 24 visible arrays. A visible array is an array that is visible to the operating system and users. Visible arrays are identified with container IDs 0 through 23.

Container IDs 24 through 63 are reserved for hidden arrays. A hidden array is an array that is not visible to the operating system and can only be used by other arrays. (The container list command, however, displays hidden arrays.)

The container move command does not prevent you from assigning a hidden container ID (24 through 63) to a visible array. If you assign a visible array with a hidden container ID (24 through 63), the operating system no longer sees the visible array. In general, when renumbering a visible array, use container IDs 0 through 23. When renumbering a hidden array, use container IDs 24 through 63.

Syntax

container move {container} {container}

Parameters

{container}

Specifies the ID number (0 to 63) of the array to renumber.

{container}

Specifies the ID number (0 to 63) to assign to the array specified in the first container parameter.
Examples

Before renumbering an array, use the container list command to obtain information about any existing arrays. As the following example shows, there is an array 0 (a volume set) on this controller:

AAC0>container list

Executing: container list

<table>
<thead>
<tr>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Size</th>
<th>Ctr</th>
<th>Usage</th>
<th>C:ID:L Offset:Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>F:</td>
<td>0</td>
<td>Volume</td>
<td>20.0MB</td>
<td>NTFS</td>
<td>0:02:0</td>
<td>64.0KB: 10.0MB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:03:0</td>
</tr>
</tbody>
</table>

The following example renumbers array 0 to array 5:

AAC0>container move 0 5

Executing: container move 0 5

Use the container list command after using the container move command to display information about the array you just renumbered, as in the following example:

AAC0>container list

Executing: container list

<table>
<thead>
<tr>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Size</th>
<th>Ctr</th>
<th>Usage</th>
<th>C:ID:L Offset:Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>F:</td>
<td>5</td>
<td>Volume</td>
<td>20.0MB</td>
<td>NTFS</td>
<td>0:02:0</td>
<td>64.0KB: 10.0MB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:03:0</td>
</tr>
</tbody>
</table>

As a result of renumbering array 0 to array 5 with the container move command, the Num Label column displays ID number 5 instead of 0. This column also displays the label assigned to the array when the array was created. If no label was assigned to the array then no label appears in the column.

Related Information

container commands:

- container list (page 5-54)
container promote

To create a multilevel volume set from a stripe set or volume set, use the container promote command. In this case, the resulting array is an array of single-partition volume sets, each of which has a single partition from the original array.

Typically, you use the container promote command as part of a process to provide fault tolerance for existing volume sets. After container promote is executed, use container create mmirror (which provides the fault tolerance) to make this array an array of mirror sets.

Notes

The container promote command differs from the container add_level command as follows:

- The container create volume command creates a single-level array.
- If you use the container add_level command and specify the ID for a single-level volume set, the result is a volume set with two partitions.
- If you use the container promote command and specify the ID for a single-level volume set, the result is a multilevel volume set (a volume set with two volumes under it).

Syntax

container promote {container}

Parameters

{container}

Specifies the ID number (0 to 63) of the array to promote into a multilevel array.
Examples

Before promoting an array to a multilevel array, use the `container list` command to obtain information about any existing arrays.

As the following example shows, there is an array 0 (a stripe set) on this controller:

```
AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth</th>
<th>Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---</td>
<td>------</td>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td>0</td>
<td>45.0MB</td>
<td>32KB</td>
<td>None</td>
<td>64.0KB:</td>
<td>15.0MB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:02:0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:03:0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:04:0</td>
<td></td>
</tr>
</tbody>
</table>
```

The following example promotes array 0 to a multilevel array:

```
AAC0>container promote 0
Executing: container promote 0
```

Use the `container list` command after using the `container promote` command to display information about the array you just promoted, as in the following example:

```
AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth</th>
<th>Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>------</td>
<td>---</td>
<td>------</td>
<td>----</td>
<td>----------</td>
</tr>
<tr>
<td>0</td>
<td>15.0MB</td>
<td>32KB</td>
<td>None</td>
<td>64.0KB:</td>
<td>15.0MB</td>
</tr>
<tr>
<td>63</td>
<td></td>
<td></td>
<td>Volume</td>
<td>0:02:0</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td></td>
<td></td>
<td>Volume</td>
<td>0:03:0</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>15.0MB</td>
<td>32KB</td>
<td>Volume</td>
<td>0:04:0</td>
<td></td>
</tr>
</tbody>
</table>
```

The following list describes the change to the display as the result of promoting an array (in this example, array 0) with the `container promote` command:

- **The Num Label column** displays four container IDs: 0 (the array that was promoted to a multilevel volume set), 63 (one of the underlying volume sets), 62 (a second underlying volume set), and 61 (a third underlying volume set).

  This column also displays the label assigned to the array when the array was created. If no label was assigned to the array then no label appears in the column.

5-70
container Commands

- The **Type** column displays the Volume array type for the three underlying volume sets.

- The **Total Size** column displays the sizes of the arrays. Note that the underlying arrays are each 15.0 MB and array 0’s size is the total of the two underlying arrays.

- The **Scsi C:ID:L** column displays the SCSI channel number, SCSI device ID, and SCSI logical unit number for the underlying arrays. In the example, array 63 resides on disk 0:02:0, array 62 resides on disk 0:03:0, and array 61 resides on disk 0:04:0.

- The **Partition Offset:Size** column displays the offset and size for the underlying arrays’ partitions. In the example, arrays 63, 62, and 61 have 64.0 KB offsets and 15.0 MB sizes.

  If a partition is dead, the “:” (colon) in the **Partition Offset:Size** column changes to a “!” (exclamation point). See the disk remove dead_partitions (page 7-9) command for more information on dead partitions.

As stated previously, you can now use the **container create mmirror** command to make a promoted array an array of mirror sets.

**Related Information**

**container commands:**

- container create mmirror (page 5-9)
- container create volume (page 5-35)
- container list (page 5-54)

**disk commands:**

- disk remove dead_partitions (page 7-9)
container readonly

To change an array’s read-write status to read-only status, use the container readonly command. Subsequent modifications to the data on the array are prohibited. To use the container readonly command, the array cannot be in use by any application.

Syntax
container readonly {container}

Parameters
{container}

Specifies the ID number (0 to 63) of the array to make read-only.

Examples
Before making an array read-only, use the container list command (with the /full switch) to obtain information about any existing arrays. As the following example shows, there is an array 0 (a volume set) on this controller. Note that the RO column is blank:

AAC0>container list /full
Executing: container list /full=TRUE 0

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>0th Stripe</th>
<th>Scsi</th>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Size</th>
<th>Ctr Size</th>
<th>Usage</th>
<th>C:ID:L</th>
<th>RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 0</td>
<td>Volume</td>
<td>10.0MB</td>
<td>NTFS</td>
<td>0:02:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the example eliminates some items in the container list display so that you can see an example of the RO column.

The following example changes array 0 from read-write status to read-only status:

AAC0>container readonly 0
Executing: container readonly 0
Use the `container list` command (with the `/full` switch) after using the `container readonly` command to display information about the array you just made read-only, as in the following example:

AAC0> container list /full
Executing: container list /full=TRUE

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>C:ID:L</th>
<th>Size</th>
<th>Chr Size</th>
<th>Usage</th>
<th>RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 0</td>
<td></td>
<td>RO</td>
</tr>
</tbody>
</table>

Note that the example eliminates some items in the `container list` display so that you can see an example of the `RO` column.

As a result of making an array (in this example, array 0) read-only with the `container readonly` command, the `RO` column displays `RO` (instead of a blank) to indicate that the specified array is now read-only.

**Related Information**

*container commands:*

- `container list` *(page 5-54)*
- `container readwrite` *(page 5-74)*
container readwrite

To change an array’s read-only status to read-write status, use the container readwrite command. Subsequent modifications to the data on the array are allowed. To use the container readwrite command, none of the array’s files can be open.

Syntax

container readwrite {container}

Parameters

{container}

Specifies the ID number (0 to 63) of the array to make read-write.

Examples

Before making an array read-write, use the container list command (with the /full switch) to obtain information about any existing arrays. As the following example shows, there is an array 0 (a volume set) on this controller. Note that the RO column displays the value RO:

AAC0>container list /full
Executing: container list /full=TRUE

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Size</th>
<th>Ctr</th>
<th>Size</th>
<th>Usage</th>
<th>C:ID:L</th>
<th>RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 0</td>
<td>Volume 10.0MB</td>
<td>NTFS</td>
<td>0:02</td>
<td>0</td>
<td>RO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the example eliminates some items in the container list display so that you can see an example of the RO column.

The following example changes array 0 from read-only status to read-write status:

AAC0>container readwrite 0
Executing: container readwrite 0
Use the `container list` command (with the `/full` switch) after using the `container readwrite` command to display information about the array you just made read-write, as in the following example:

```
AAC0> container list /full
Executing: container list /full=TRUE
```

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Size</th>
<th>Ch Size</th>
<th>Usage</th>
<th>C:ID:L</th>
<th>RO</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 0</td>
<td>Volume 10.00MB</td>
<td>NTFS</td>
<td>0:02:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the example eliminates some items in the container list display so that you can see an example of the RO column.

As a result of making an array (in this example, array 0) read-write with the `container readwrite` command, the RO column displays blank (instead of an RO) to indicate that the specified array is now read-write.

**Related Information**

container commands:
- `container list` (page 5-54)
- `container readonly` (page 5-72)
container reconfigure

To change the configuration of an array, use the container reconfigure command. The container reconfigure command allows you to perform the following operations:

■ Transform an array from one type to another type
  
  You can transform an array from one type to another type. For example, you can transform a stripe set into a RAID-5 set. In this case, the stripe set changes to a RAID-5 set and remains the same size. You specify the appropriate switches that the container reconfigure command provides to transform an array.

■ Add more SCSI drives to an array
  
  You can add more SCSI drives to an array by specifying one or more SCSI devices. This action extends the array. The command uses the freespace(s) from the SCSI device(s) you specify to reconfigure the array.

  For example, you can extend a stripe set by specifying one or more SCSI devices. In this case, the stripe set grows, but remains a stripe set.

■ Change an array’s stripe size
  
  You can change an array’s stripe size by specifying the appropriate switch with a valid stripe size. For example, you can change the stripe size of a stripe set from 16K to 32K.

■ Change an array’s partition size
  
  You can change an array’s partition size by specifying the appropriate switch with a valid partition size. For example, you can change the partition size of a mirror set from 500 MB to 800 MB.
container Commands

- Extend an existing file system
  You can extend an existing file system by specifying the appropriate switch. (The command extends the file system after completing the reconfigure operation.)

- Move partitions to other disks
  You can move an array’s partitions to other disks by specifying the appropriate switches with a valid partition or partitions. For example, you can move three entries of a RAID-5 set to new disks.

You can combine the previously listed operations.

Notes

Some reconfigure operations result in destination sizes slightly different than what you specified.

When you perform an array reconfigure operation on a UNIX operating system you may see a resource conflict-related error. Typically, this error occurs when there is not enough space on the disk to perform the reconfigure operation. To correct the problem, use another disk (with more space) to perform the reconfigure operation.

Syntax

container reconfigure [/stripe_size{=integer}] [/extend_fs{=boolean}] [/mirror{=boolean}] [/partition_move{=boolean}] [/partition_size{=integer}] [/raid5{=boolean}] [/raid10{=boolean}] [/volume{=boolean}] [/wait{=boolean}] {container} [{scsi_device}...]
Parameters
{container}
  Specifies the ID number (0 to 63) of the array you want to reconfigure.
{scsi_device}...
  Specifies one or more SCSI devices. Typically, you specify one or more SCSI devices when adding more drives to an array or moving an array’s partitions. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), a SCSI device ID (0 through 15 inclusive), and a SCSI device logical unit number (0 through 7 inclusive). See the scsi_device section on page 3-7 for more information on how to specify the SCSI device. The command uses the freespace(s) from the SCSI device(s) you specify to reconfigure the array.

Switches
/stripe_size{=integer}
  Specifies the changed stripe size for the array. You can specify stripe sizes for the following types of arrays:
  ■ RAID-5 set
  ■ Multilevel stripe set:
   – Stripe set of mirror sets
   – Stripe set of volume sets
   – Stripe set of stripe sets
/extend_fs{=boolean}
  Specifies whether to extend the file system so that it occupies the entire reconfigured array. If you specify TRUE, the command adds no new freespace and extends the file system so that it occupies the entire reconfigured array. (The command extends the file system after completing the reconfigure operation.) If you specify FALSE, the command adds freespace to the reconfigured array and does not extend the file system to occupy the entire reconfigured array.

This switch defaults to FALSE.
This switch applies only to those multilevel volume sets on which an NTFS file system resides. If you extend an NTFS file system, you must reboot your system in order for the extension to take effect.

If you do not specify this switch, you can later extend the file system with the `container extend file_system` command.

This command and its associated switches (if any) are supported on the following operating systems:

- Windows NT
- Windows 2000 (basic disk only)
- Windows XP (basic disk only)

`/mirror{=boolean}`

Specifies whether to reconfigure the existing array into a mirror set. If you specify TRUE, the command reconfigures the existing array into a mirror set. If you specify FALSE, the command does not reconfigure the existing array into a mirror set.

This switch defaults to FALSE.

`/partition_move{=boolean}`

Specifies whether to move partitions instead of adding extra space (using additional disks). If you specify TRUE, the command moves partitions instead of adding extra space. If you specify FALSE, the command does not move partitions.

This switch defaults to FALSE.

`/partition_size{=integer}`

Specifies the partition size. All partitions must be the same size and you can specify only one partition per disk.
Adaptec SCSI RAID Software Reference Guide

/raid5{=boolean}
Specifies whether to reconfigure the existing array into a RAID-5 set. If you specify TRUE, the command reconfigures the existing array into a RAID-5 set. If you specify FALSE, the command does not reconfigure the existing array into a RAID-5 set.
This switch defaults to FALSE.

/raid10{=boolean}
Specifies whether to reconfigure the existing array into a RAID-10 set. If you specify TRUE, the command reconfigures the existing array into a RAID-10 set. If you specify FALSE, the command does not reconfigure the existing array into a RAID-10 set.
This switch defaults to FALSE.

/stripe{=boolean}
Specifies whether to reconfigure the existing array into a stripe set. If you specify TRUE, the command reconfigures the existing array into a stripe set. If you specify FALSE, the command does not reconfigure the existing array into a stripe set.
This switch defaults to FALSE.

/volume{=boolean}
Specifies whether to reconfigure the existing array into a volume set. If you specify TRUE, the command reconfigures the existing array into a volume set. If you specify FALSE, the command does not reconfigure the existing array into a volume set.
This switch defaults to FALSE.
/wait{=boolean}

Specifies whether the command performs the array reconfiguration operation synchronously or asynchronously. If you set this switch to TRUE, the command performs the array reconfiguration operation synchronously, which means the command prompt does not return until the array reconfiguration operation completes. If you set this switch to FALSE, the command performs the array reconfiguration operation asynchronously, which means the command prompt returns immediately.

Examples

Use the container list command to obtain information about any existing arrays. As the following example shows, there is an array 0 (a mirror set) and an array 1 (a volume set) on this controller:

AACO>container list
Executing: container list

<table>
<thead>
<tr>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Size</th>
<th>Ctr Size</th>
<th>Usage</th>
<th>C:ID:L Offset:Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Mirror</td>
<td>15.0MB</td>
<td>None</td>
<td>1:02:0 64.0KB: 15.0MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tigris</td>
<td></td>
<td></td>
<td></td>
<td>1:03:0 64.0KB: 15.0MB</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Volume</td>
<td>15.0MB</td>
<td>NTFS</td>
<td>1:00:0 64.0KB: 15.0MB</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following example reconfigures a volume set to a stripe set:

AACO>container reconfigure /partition_size=1 /stripe 1
Executing: container reconfigure /partition_size=1 /stripe=TRUE 1

As the command executes, note that the title bar of the DOS window displays the status of the command. For example:

Stat:OK!Task:100,Func:RCF Ctr:1,State:RUN 97.2%

See page 3-10 for detailed information on the status information that the command displays in the title bar as it executes the task.
Use the `container list` command after using the `container reconfigure` command to display information about the array you just reconfigured, as in the following example:

```
AAC0>container list
Executing: container list
```

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth</th>
<th>Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Mirror</td>
<td>15.0MB</td>
<td>None</td>
<td>1:02:0</td>
<td>64.0KB: 15.0MB</td>
</tr>
<tr>
<td></td>
<td>Tigris</td>
<td></td>
<td></td>
<td>1:03:0</td>
<td>64.0KB: 15.0MB</td>
</tr>
<tr>
<td>E: 1</td>
<td>Stripe</td>
<td>15.0MB</td>
<td>NTFS</td>
<td>1:00:0</td>
<td>64.0KB: 15.0MB</td>
</tr>
</tbody>
</table>

As the result of reconfiguring an array (in this example, array 1) with the `container reconfigure` command, the **Type** column displays **Stripe** (instead of **Volume**) to indicate that the specified array is now a stripe set instead of a volume set.

**Related Information**

- `container create mirror` (page 5-5)
- `container create raid5` (page 5-24)
- `container create stripe` (page 5-30)
- `container create volume` (page 5-35)
- `container extend file_system` (page 5-43)
- `container list` (page 5-54)
container Commands

container release_cache

To release the cache buffers associated with a specific array, use the container release_cache command. When a disk fails or you remove a disk, the cache buffers associated with specific arrays remain locked on the controller. This allows the opportunity for the disk to come back online or gives you the opportunity to replace the disk. In this case the arrays regain the previously locked buffers.

On the other hand, you may want to return these cache buffers to the global buffer pool. This command allows you to disassociate the cache buffers associated with specific arrays and release these cache buffers to the global pool.

Syntax
container release_cache {container}

Parameters
{container}

Specifies the ID number (0 to 63) of the array on which you want to release cache buffers.

Examples
The following example releases the cache buffers associated with array 0:

AAC0>container release_cache 0
Executing: container release_cache 0

Related Information
container commands:

■ container set cache (page 5-97)
container remove drive_letter

To remove a drive letter, use the container remove drive_letter command. To use the container remove drive_letter command, none of the array’s files can be open.

Command Availability

This command and its associated switches (if any) are supported on the following operating systems:

- Windows NT
- Windows 2000 (basic disk only)
- Windows XP (basic disk only)

Syntax

container remove drive_letter {string}

Parameters

{string}

Specifies the drive letter to remove. The colon (:) after the drive letter is optional.

Examples

Before removing a drive letter from an array, use the container list command to obtain information about any existing arrays. As the following example shows, there is an array 0 (a volume set) on this controller with a drive letter F:

AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Size</th>
<th>Ctr Size</th>
<th>Usage</th>
<th>C:ID:L Offset:Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td></td>
<td>Volume</td>
<td>10.0MB</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following example removes drive letter F from array 0:

AAC0> container remove drive_letter F
Executing: container remove drive_letter "F"
Use the `container list` command after using the `container remove drive_letter` command to display information about the array on which you just removed a drive letter, as in the following example:

```
AAC0>container list
```

```
Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr</td>
<td>Label</td>
<td>Size</td>
<td>Ctr</td>
<td>Usage</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Size</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C:ID:L Offset:Size</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>------------</td>
<td>------</td>
<td>-----------</td>
</tr>
<tr>
<td>0</td>
<td>Volume 10.0MB</td>
<td>NTFS</td>
<td>0:02:0</td>
<td>64.0KB: 10.0MB</td>
</tr>
</tbody>
</table>
```

As the result of removing a drive letter from an array (in this example, array 0) with the `container remove drive_letter` command:

- The `Dr` column no longer displays the drive letter assigned in a previous use of the `container assign drive_letter` command. In this example, the letter F no longer appears in the Dr column.

**Related Information**

container commands:

- `container list` (**page 5-54**)
container remove failover

To remove one or more failover disks that were assigned to an array using the container set failover command, use the container remove failover command.

Syntax

centraline remove failover  {container} {scsi_device} [{scsi_device} ...]

Parameters

{container}

Specifies the ID number (0 to 63) of the array whose assigned failover disk(s) you want to remove.

{scsi_device}

Specifies the ID for the SCSI device that you want to remove as a failover disk for the array specified in the container parameter. You previously assigned this SCSI device as a failover disk with the container set failover command. See the scsi_device section on page 3-7 for more information on how to specify the SCSI device.

{scsi_device}...

Specifies the ID(s) for any other SCSI device(s) you want to remove as failover disk(s) for the array specified in the container parameter.
Examples

Before removing one or more failover disks from an array, use the `container show failover` command to obtain information about any existing failover disks assigned to arrays.

As the following example shows, there is an array 0 that has two failover disks assigned to it on this controller:

```
AAC0>container show failover
Executing: container show failover
container Scsi C:ID:L
--------- ----------------------------------
 0 0:03:0 0:04:0
```

The following example removes SCSI device 0:03:0 as an assigned failover disk for array 0:

```
AAC0>container remove failover 0 (0,3,0)
Executing: container remove failover 0 (CHANNEL=0,ID=3,LUN=0)
```

Use the `container show failover` command after removing a failover disk from an array’s failover disk list with the `container remove failover` command to display information about the array’s failover disk list, as in the following example:

```
AAC0>container show failover
Executing: container show failover
container Scsi C:ID:L
--------- ----------------------------------
 0 0:04:0
```

As the display shows, SCSI device (0,03,0) is no longer in the failover disk list for array 0.

Related Information

container commands:
- `container set failover` (page 5-101)
- `container show failover` (page 5-116)
container remove file_system

To remove the file system from an array, use the container remove file_system command. Use this command when the file system on the array is no longer needed.

This command fails if there are open files on the array.

Command Availability

This command and its associated switches (if any) are supported on the following operating systems:

- Windows NT
- Windows 2000 (basic disk only)
- Windows XP (basic disk only)

Syntax

container remove file_system {container}

Parameters

{container}

Specifies the ID number (0 to 63) of the array from which you want to remove the file system.

Examples

Before removing a file system from an array, use the container list command to obtain information about any existing arrays.

As the following example shows, there is an array 0 (a volume set) on this controller:

AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr</td>
<td>Label</td>
<td>Type</td>
<td>Size</td>
</tr>
<tr>
<td>F: 0</td>
<td>Volume</td>
<td>10.0MB</td>
<td>NTFS</td>
</tr>
</tbody>
</table>
The following example removes the file system from array 0:

AAC0>container remove file_system 0
Executing: container remove file_system 0

Use the container list command after removing a file system from an array with the container remove file_system command to display information about the container, as in the following example:

AAC0>container list
Executing: container list

As a result of removing a file system from an array, the Usage column displays None (instead of NTFS) to indicate that the specified array no longer has a file system.

Related Information

container commands:
  ■ container format (page 5-54)
  ■ container list (page 5-54)
container remove global_failover

To remove one or more failover disks that were assigned to all arrays through the container set global_failover command, use the container remove global_failover command.

Syntax

container remove global_failover {scsi_device} [{scsi_device}...]

Parameters

{scsi_device}

Specifies the ID for the SCSI device that you want to remove as a failover disk for all arrays. You previously assigned this SCSI device as a failover disk with the container set global_failover command. See the scsi_device section on page 3-7 for more information on how to specify the SCSI device.

{scsi_device}...

Specifies the ID(s) for any other SCSI device(s) you want to remove as failover disk(s) for all arrays. You previously assigned these SCSI device(s) as failover disk(s) with the container set global_failover command.

Examples

Before removing one or more failover disks from all arrays, use the container show failover command to obtain information about any existing failover disks assigned to arrays.

As the following example shows, there is an array 0 that has SCSI devices (1,2,0) and (1,3,0) assigned to it.

AAC0>container show failover
Executing: container show failover
container Scsi C:ID:L
--------- ----------------------------------
GLOBAL 1:02:0 1:03:0
0 --- No Devices Assigned ---
The following example removes SCSI device 1:02:0 as an assigned failover disk for all arrays:

AAC0>container remove global_failover (1,2,0)

Executing: container remove global_failover (CHANNEL=1,ID=2,LUN=0)

Use the `container show failover` command after removing a failover disk from an array's failover disk list with the `container remove failover` command to display information about the array's failover disk list, as in the following example:

AAC0>container show failover
Executing: container show failover
container Scsi C.ID:L
--------- ----------------------------------
GLOBAL 1:03:0
0 --- No Devices Assigned ---

As the display shows, SCSI device (1,2,0) is no longer in the failover disk list for all arrays. However, SCSI device (1,3,0) remains in the failover disk list for all arrays.

**Related Information**

container commands:

- `container set failover` (page 5-101)
- `container set global_failover` (page 5-103)
- `container show failover` (page 5-116)
container restore RAID5

To restore a RAID-5 set, use the container restore RAID5 command. Typically, you use this command to restore a RAID-5 set that contains one or more dead partitions. This command does not always succeed and, in fact, you should use this command if all other measures to restore the RAID-5 set fail.

One situation where the command might prove useful is for those situations where you may have inadvertently pulled a drive and then almost immediately put it back. The act of pulling the drive may cause some dead partitions to appear. You can then restore the RAID-5 set by using this command.

Syntax
container restore RAID5 {container}

Parameters
{container}

Specifies the ID number (0 to 63) of the array (a RAID-5 set) to restore.

Examples
Before restoring a RAID-5 set, use the container list command to display information about the RAID-5 set. If a partition is dead, the “:” (colon) in the Partition Offset:Size column changes to a “!” (exclamation point).

AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr Label</td>
<td>Type</td>
<td>Size</td>
<td>Ctr Size</td>
<td>Usage</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>0</td>
<td>RAID-5</td>
<td>30.0MB</td>
<td>64KB</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The previous example shows that there is one dead partition on this RAID-5 set. The following example uses the container restore RAID5 command to attempt to restore the RAID-5 set:
AAC0>container restore RAID5 0
Executing: container restore RAID5 0

Use the `container list` command after using the `container restore RAID5` command to display information about the RAID-5 set:

AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth</th>
<th>Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that in this case the command successfully restored the RAID-5 set as indicated by the replacement of the exclamation point ("!") with a colon (":").

Related Information

container commands:
  - `container create raid5` (page 5-24)
  - `container list` (page 5-54)

disk commands:
  - `disk remove dead_partitions` (page 7-9)
container scrub

To scrub a redundant array, use the container scrub command. A mirror set, a multilevel array of mirror sets, and a RAID-5 set are examples of redundant arrays. For a mirror set or a multilevel array of mirror sets, this means the command reconstructs the data on both mirror halves (partitions), if found to be different. For RAID-5 sets, the command recalculates and replaces, if necessary, the parity information.

Syntax

container scrub [/io_delay{=integer}] [/no_repair{=boolean}] [/wait{=boolean}] {container}

Parameters

{container}

Specifies the ID number (0 to 63) of the redundant array to scrub.

Switches

/io_delay{=integer}

Specifies the number of milliseconds the controller waits between the I/O operations required to scrub the redundant array. The I/O delay value is not preserved between reboots of the operating system. Valid values are 0 through 100.

/no_repair{=boolean}

Specifies whether the command performs the scrub operation on the redundant array without repairing the error. If you set this switch to TRUE, the command performs the scrub action without repairing the error. If you set this switch to FALSE, the command performs the scrub action and repairs any errors.
/wait{=boolean}

Specifies whether the command performs the scrub action synchronously or asynchronously. If you set this switch to TRUE, the command performs the scrub action synchronously, which means the command prompt does not return until the scrub action completes. If you set this switch to FALSE, the command performs the scrub action asynchronously, which means the command prompt returns immediately.

Examples

Before scrubbing a redundant array, use the container list command to obtain information about any existing arrays. As the following example shows, there is an array 0 (a mirror set) on this controller:

AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>D: 0</td>
<td>Mirror 10.0MB</td>
<td>NTFS</td>
<td>0:02:0 64.0KB: 10.0MB</td>
<td>0:02:0 10.0MB: 10.0MB</td>
</tr>
</tbody>
</table>

The following example synchronously scrubs array 0 using a delay time of 5 milliseconds:

AAC0>container scrub /io_delay=5 /wait=TRUE 0
Executing: container scrub /io_delay=5 /wait=TRUE 0

As the command executes, note the title bar of the DOS window displays the status of the command. For example:

Stat:OK!Task:100,Func:MSC Ctr:0,State:RUN 97.2%

See page 3-10 for detailed information on the status information that the command displays in the title bar as it executes the task.
Use the `container list` command after using the `container scrub` command to display information about the scrubbed array, as in the following example:

```
AAC0>container list
Executing: container list
```

```
<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr</td>
<td>Label</td>
<td>Type</td>
<td>Size</td>
<td>Ctr Size</td>
</tr>
<tr>
<td>----</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>D: 0</td>
<td>Mirror</td>
<td>10.0MB</td>
<td>NTFS</td>
<td>0:02:0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10.0MB:</td>
</tr>
</tbody>
</table>
```

As the example shows, there is no difference between the array list display prior to and after the scrub operation.

**Related Information**

container commands:

- `container create mirror` (page 5-5)
- `container create mmirror` (page 5-9)
- `container create raid5` (page 5-24)
- `container list` (page 5-54)
container set cache

To set cache parameters for a specific array, use the container set cache command. You can use this command only if a native operating system's file system—for Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only), NTFS, or FAT—resides on the array. In fact, the CLI prevents you from setting cache parameters if the array:

- Is an array involved in a reconfiguration operation

  The CLI disables the cache parameters on the array involved in a reconfiguration operation. The CLI re-enables the cache parameters (assuming they were previously set) on the array when the reconfiguration operation completes.

The controller provides two global cache buffer pools available to arrays: a volatile read-ahead cache and a nonvolatile NVRAM write-back cache. Collectively, these global caches are referred to as the raw array cache.

The container set cache command allows you to set several characteristics associated with the raw array cache. These characteristics are embodied in the switches for the command.

Notes

Some controllers may not support the NVRAM write-back cache. Additionally, some controllers may not support the ability to enable the NVRAM write-back cache.

Syntax

container set cache [/read_cache_enable{=boolean}] [/unprotected{=boolean}] [/write_cache_enable{=boolean}] {container}
Parameters

{container}

Specifies the ID number (0 to 63) of the array on which you want to set cache parameters.

Switches

/read_cache_enable{=boolean}

Specifies whether to enable the read-ahead cache. If you set this switch to TRUE, the command enables the read-ahead cache for the specified array. This switch should always be enabled to optimize performance, unless your application—which is unlikely—is doing completely random reads.

This switch defaults to TRUE.

To disable the read-ahead cache for the specified array, set this switch to FALSE. Note that if you disable the read-ahead cache, no other characteristics can be set.

/unprotected{=boolean}

Specifies whether to set the array’s NVRAM write-back cache to disable, enable when protected, or enable always. You use this switch in conjunction with the /write_cache_enable switch to accomplish the desired setting. See the write_cache_enable switch for more information.

/write_cache_enable{=boolean}

Specifies whether to set the array’s NVRAM write-back cache to disable, enable when protected, or enable always. You use this switch in conjunction with the /unprotected switch to accomplish the desired setting.
Table 5-5 summarizes the values for the /write_cache_enable and /unprotected switches:

Table 5-5. Switch Values and Results

<table>
<thead>
<tr>
<th>/write_cache_enable Switch Setting</th>
<th>/unprotected Switch Setting</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>FALSE</td>
<td>FALSE</td>
<td>The NVRAM write-back cache setting for the specified array is disabled.</td>
</tr>
<tr>
<td>FALSE</td>
<td>TRUE</td>
<td>Not allowed. An appropriate error message displays.</td>
</tr>
<tr>
<td>TRUE</td>
<td>FALSE</td>
<td>The NVRAM write-back cache setting for the specified array is enabled when protected. This means the controller enables the array’s NVRAM write-back cache only if a battery is present and its status is OK.</td>
</tr>
<tr>
<td>TRUE</td>
<td>TRUE</td>
<td>The NVRAM write-back cache setting for the specified array is enabled always. This means the controller forces the enabling of the array’s NVRAM write-back cache even if write data could be lost due to no battery or a bad battery.</td>
</tr>
</tbody>
</table>

**Examples**

Before setting cache parameters for a specific array, use the container list command to obtain information about any existing arrays.

As the following example shows, there is an array 0 (a volume set) on this controller with no file system on it (as evidenced by None displayed in the Usage column):

AAC0>container list
Executing: container list
Dr Label Type Size Ctr Size Usage C:ID:L Offset:Size
-- ------ ------ ------ ------- ------------- ---------------
 0 Volume 15.0MB None 0:02:0 64.0KB: 15.0MB
The following example sets cache parameters for array 0 by accepting all of the defaults:

AAC0>container set cache 0  
Executing: container set cache 0

After setting cache parameters for a specific array, use the container show cache command to display cache parameter information, as in the following example:

AAC0>container show cache 0  
Executing: container show cache 0  
Global container Read Cache Size : 5345280  
Global container Write Cache Size : 1970176  
Read Cache Status : ENABLED  
Write Cache Status : ENABLED  
Stream Detection Status : ENABLED

Related Information

container commands:

- container release_cache (page 5-83)
- container show cache (page 5-110)
container set failover

To assign an automatic failover disk(s) for a single array, use the container set failover command. If the array was already assigned a failover disk(s), the command adds the specified disk(s) to the array’s list of failover disk(s). Although all array types accept failover assignments, only mirror set and RAID-5 set (redundant) array types use the failover assignment if a disk fails.

Syntax

container set failover {container} {scsi_device} [{scsi_device}...]

Parameters

{container}
  Specifies the ID number (0 to 63) of the array on which to assign an automatic failover disk(s).

{scsi_device}
  Specifies the ID for the SCSI device that you want to assign as a failover disk to the array specified in the container parameter. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), a SCSI device ID (0 through 15 inclusive), and a SCSI device logical unit number (0 through 7 inclusive). See the scsi_device section on page 3-7 for more information on how to specify the SCSI device.

{scsi_device}...
  Specifies the ID(s) for additional SCSI device(s) that you want to assign as failover disk(s) to the array specified in the container parameter.

Examples

Before assigning a SCSI device as a failover disk to an array, use the container list command to obtain information about any existing arrays.
As the following example shows, there is an array 0 (a mirror set) on this controller:

```
AAC0>container list
Executing: container list

Num Total Oth Stripe Scsi Partition
Dr Label Type Size Ctr Size Usage C:ID:L Offset:Size
-- ----- ------ ------ --- ------ ------- ------ --------------
D: 0 Mirror 10.0MB NTFS 0:02:0 64.0KB: 10.0MB
 0:02:0 10.0MB: 10.0MB
```

The following example assigns two SCSI failover disks to array 0. If you assign only one SCSI disk as a failover device, ensure that there is sufficient freespace. If you assign more than one SCSI disk as failover devices, you need ensure that only one of these disks has sufficient space. The reason for this is that the failover operation will look for the disk that has enough space.

```
AAC0>container set failover 0 (0,3,0) (0,4,0)
Executing: container set failover 0 (CHANNEL=0,ID=3,LUN=0)
 (CHANNEL=0,ID=4,LUN=0)
```

Use the `container show failover` command after using the `container set failover` command to display information about the array just assigned failover disk(s).

**Related Information**

container commands:

- `container list` (page 5-54)
- `container remove failover` (page 5-86)
- `container show failover` (page 5-116)
container set global_failover

To assign an automatic failover disk(s) for all arrays, use the `container set global_failover` command. If the array was already assigned a failover disk(s), the command adds the specified disk(s) to the array’s list of failover disk(s). Although all array types accept failover assignments, only mirror set and RAID-5 set (redundant) array types use the failover assignment if a disk fails.

**Syntax**

```
container set global_failover {scsi_device} [{scsi_device}...]
```

**Parameters**

{scsi_device}

Specifies the ID for the SCSI device that you want to assign as a failover disk. The command assigns this disk to all arrays. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), a SCSI device ID (0 through 15 inclusive), and a SCSI device logical unit number (0 through 7 inclusive). See the `scsi_device` section on page 3-7 for more information on how to specify the SCSI device.

{scsi_device}...

Specifies the ID(s) for additional SCSI device(s) that you want to assign as failover disk(s) to all arrays.

**Examples**

Before assigning a SCSI device as a failover disk to all arrays, use the `container list` command to obtain information about any existing arrays. As the following example shows, there is an array 0 (a mirror set) on this controller:

```
AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth</th>
<th>Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Mirror</td>
<td>15.0MB</td>
<td>None</td>
<td>1:02:0</td>
<td>64.0KB: 15.0MB</td>
</tr>
<tr>
<td>Tigris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Tigris
The following example assigns two SCSI failover disks to all arrays. If you assign only one SCSI disk as a failover device, ensure that there is sufficient freespace. If you assign more than one SCSI disk as failover devices, you need ensure that only one of these disks has sufficient space. The reason for this is that the failover operation will look for the disk that has enough space.

```
AAC0>container set global_failover (1,2,0) (1,3,0)
Executing: container set global_failover (CHANNEL=1,ID=2,LUN=0)
 (CHANNEL=1,ID=3,LUN=0)
```

Use the `container show failover` command (with or without the `/global` switch) after using the `container set failover` command to display information about the array(s) just assigned failover disk(s), as in the following example:

```
AAC0>container show failover /global
Executing: container show failover /global=TRUE
container Scsi C:ID:L
--------- ----------------------------------
GLOBAL 1:02:0 1:03:0
```

As the example shows, the display indicates that SCSI devices (1,2,0) and (1,3,0) are assigned as failover devices for all arrays (the word `GLOBAL` appears in the `array` column).

**Related Information**

container commands:

- `container list` (page 5-54)
- `container remove failover` (page 5-86)
- `container remove global_failover` (page 5-90)
- `container set failover` (page 5-101)
- `container show failover` (page 5-116)
container set io_delay

To set the I/O delay for an array, use the `container set io_delay` command. You can specify an I/O delay for the following array-related tasks:

- Creating a mirror set
- Creating a multilevel array of mirror sets from a multilevel array of volume sets
- Scrubbing a redundant array

You use this command to change the I/O delay from the one you specified in the command for the previously listed tasks. The I/O delay value is not preserved between reboots of the operating system.

Syntax

`container set io_delay {container} {integer}`

Parameters

{container}

Specifies the ID number (0 to 63) of the array on which to set the I/O delay.

{integer}

Specifies the number of milliseconds the controller waits between the I/O operations required to perform the specified background task. The I/O delay value is not preserved between reboots of the operating system. Valid values are 0 through 100.
Examples

Before setting the I/O delay on an array, use the container list command to obtain information about any existing arrays.

As the following example shows, there is an array 0 (a volume set) on this controller:

```
AAC0>container list
Executing: container list
```

```
Num Total Oth Stripe Scsi Partition
Dr Label Type Size Ctr Size Usage C:ID:L Offset:Size
-- ----- ------ ------ --- ------ ------- ------ --------------
F: 0 Volume 10.0MB NTFS 0:02:0 64.0KB: 10.0MB
```

The following example creates a mirror set asynchronously and sets an I/O delay of 20 milliseconds for array 0. You need to perform the create mirror task asynchronously. Otherwise, you cannot change the I/O delay:

```
container create mirror /io_delay=20 0 (0,2,0)
Executing container create mirror /io_delay=20 0 (CHANNEL=0,ID=2,LUN=0)
```

The following example shows how to change the I/O delay to 40 milliseconds on the currently running create mirror task:

```
AAC0>container set io_delay 0 40
Executing: container set io_delay 0 40
```

Use the container list command after using the container set io_delay command to display information about the array, as in the following example:

```
AAC0>container list
Executing: container list
```

```
Num Total Oth Stripe Scsi Partition
Dr Label Type Size Ctr Size Usage C:ID:L Offset:Size
-- ----- ------ ------ --- ------ ------- ------ --------------
F: 0 Volume 10.0MB NTFS 0:02:0 64.0KB: 10.0MB
```

As the example shows, there is no difference between the array list display prior to and after the set I/O delay operation.
Related Information

container commands:

- container create mirror (page 5-5)
- container create mmirror (page 5-9)
- container list (page 5-54)
- container scrub (page 5-94)
container set label

To assign a new label to the specified array or to assign a label to an array that has no label, use the container set label command.

The following commands have a /label switch that allows you to assign a label to the array when you create it:

- container create mstripe (a multilevel stripe set)
- container create mvolume (a multilevel volume set)
- container create raid5 (a RAID-5 set)
- container create stripe (a stripe set)
- container create volume (a volume set)

The label you specify with the container set label command and the /label switch associated with the previously listed container create commands is not the label that displays in Windows Explorer. The label displayed by Windows Explorer comes from the label specified with the container format command.

Syntax

container set label {container} {string}

Parameters

{container}

Specifies the ID number (0 to 63) of the array to which you want to assign a label.

{string}

Specifies the label you want to assign to the array. The label is a string of up to sixteen characters.

Examples

Before assigning a label to a specific array, use the container list command to obtain information about any existing arrays. As the following example shows, there is an array 0 (a volume set) on this controller with no label assigned to it (as evidenced by no label in the Num Label column):
container Commands

AAC0> container list
Executing: container list
<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth</th>
<th>Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Volume</td>
<td>15.0MB</td>
<td>None</td>
<td>0:02:0</td>
<td>64.0KB: 15.0MB</td>
</tr>
</tbody>
</table>

The following example assigns the label **Tigris** to array 0:

AAC0> container set label 0 Tigris
Executing: container set label 0 "Tigris"

Use the `container list` command after using the `container set label` command to display the new label, as in the following example:

AAC0> container list
Executing: container list
<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth</th>
<th>Stripe</th>
<th>Scsi</th>
<th>Partition</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Volume</td>
<td>15.0MB</td>
<td>None</td>
<td>0:02:0</td>
<td>64.0KB: 15.0MB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tigris</td>
</tr>
</tbody>
</table>

As the example shows, the new label **Tigris** now appears in the **Num Label** column.

**Related Information**

container commands:

- container create mstripe (page 5-14)
- container create mvolume (page 5-19)
- container create raid5 (page 5-24)
- container create stripe (page 5-30)
- container create volume (page 5-35)
- container format (page 5-54)
container show cache

To display the current cache parameters associated with a specific array, use the container show cache command. Typically, you use this command after setting cache parameters for a specific array using the container set cache command.

Syntax

container show cache {container}

Parameters

{container}

Specifies the ID number (0 to 63) of the array whose associated cache parameters you want to display.

Examples

Before setting cache parameters for a specific array, use the container list command to obtain information about any existing arrays.

As the following example shows, there is an array 0 (a volume set) on this controller with no file system on it (as evidenced by None displayed in the Usage column). Assume the cache parameters for this array were previously set with the container set cache command:

AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Dr Label</th>
<th>Type</th>
<th>Size</th>
<th>Ctrl</th>
<th>Size</th>
<th>Usage</th>
<th>C:ID:L Offset:Size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>Volume 15.0MB</td>
<td>None</td>
<td>0:02:0</td>
<td>64.0KB</td>
<td>15.0MB</td>
<td></td>
</tr>
</tbody>
</table>
The following example displays cache parameters for array 0:

```
AAC0>container show cache 0
Executing: container show cache 0
Global container Read Cache Size : 5345280
Global container Write Cache Size : 1970176
Read Cache Setting : ENABLED
Write Cache Setting : ENABLED
Write Cache Status : ENABLED
```

The following list provides a brief description of the items that appear as a result of using the `container show cache` command:

- **Global array Read Cache Size**
  This item indicates the number of blocks devoted to the read cache.

- **Global array Write Cache Size**
  This item indicates the number of blocks devoted to the write cache.

- **Read Cache Setting**
  This item indicates whether the read cache is set for the array. The value `ENABLED` indicates the read cache is set for this array. The value `DISABLED` indicates the read cache is disabled for this array.

- **Write Cache Setting**
  This item indicates whether the write cache is set for the array. Table 5-6 displays the possible values for this setting.
### Table 5-6. Values for the Write Cache Setting

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISABLE</td>
<td>The write cache is disabled for this array</td>
</tr>
<tr>
<td>ENABLE ALWAYS</td>
<td>The write cache setting for the specified array is enabled always. This means the controller forces the enabling of the array’s write cache even if write data could be lost due to no battery or a bad battery.</td>
</tr>
<tr>
<td>ENABLE WHEN PROTECTED</td>
<td>The write cache setting for the specified array is enabled when protected. This means the controller enables the array’s write cache only if a battery is present and its status is OK.</td>
</tr>
</tbody>
</table>

- **Write Cache Status**

  This item indicates the current status of the write cache for the array and, where appropriate, the status of the battery.
Table 5-7 displays the values for Write Cache Status:

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active, not protected</td>
<td>The status of the write cache for this array is as follows:</td>
</tr>
<tr>
<td></td>
<td>■ Active – The write cache can accept write operations from the array.</td>
</tr>
<tr>
<td></td>
<td>■ Not protected – The write cache is force-enabled. Thus, the write cache accepts write operations even if write data could be lost due to no battery present or a bad battery on the controller.</td>
</tr>
<tr>
<td></td>
<td>■ This status also indicates that the battery status is OK.</td>
</tr>
<tr>
<td>Active, not protected,</td>
<td>The status of the write cache for this array is as follows:</td>
</tr>
<tr>
<td>battery low</td>
<td>■ Active – The write cache can accept write operations from the array.</td>
</tr>
<tr>
<td></td>
<td>■ Not protected – The write cache is force-enabled. Thus, the write cache accepts write operations even if write data could be lost due to no battery present or a bad battery on the controller.</td>
</tr>
<tr>
<td></td>
<td>■ This status also indicates that the battery status is low.</td>
</tr>
<tr>
<td>Active, not protected,</td>
<td>The status of the write cache for this array is as follows:</td>
</tr>
<tr>
<td>battery not present</td>
<td>■ Active – The write cache can accept write operations from the array.</td>
</tr>
<tr>
<td></td>
<td>■ Not protected – The write cache is force-enabled. Thus, the write cache accepts write operations even if write data could be lost due to no battery present or a bad battery on the controller.</td>
</tr>
<tr>
<td></td>
<td>■ This status also indicates that the battery is not present on the controller.</td>
</tr>
</tbody>
</table>
The status of the write cache for this array is as follows:
- **Active** – The write cache can accept write operations from the array.
- **Not protected** – The write cache is force-enabled. Thus, the write cache accepts write operations even if write data could be lost due to no battery present or a bad battery on the controller.
- **This status also indicates that the battery is being reconditioned.**

The status of the write cache for this array is as follows:
- **Active** – The write cache can accept write operations from the array.
- **Protected** – The write cache is enabled only if a battery is present and its status is OK.
- **This status also indicates that the controller’s battery is present and its status is OK.**

The status of the write cache for this array is as follows:
- **Inactive** – The write cache cannot accept write operations from the array.
- **Battery low** – This controller’s battery power is low.

The status of the write cache for this array is as follows:
- **Inactive** – The write cache cannot accept write operations from the array.
- **Battery not present** – This controller has no battery.

The status of the write cache for this array is as follows:
- **Inactive** – The write cache cannot accept write operations from the array.
- **Battery low** – The controller’s battery is being reconditioned.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active, not protected,</td>
<td>The status of the write cache for this array is as follows:</td>
</tr>
<tr>
<td>battery reconditioning</td>
<td>- <strong>Active</strong> – The write cache can accept write operations from the array.</td>
</tr>
<tr>
<td></td>
<td>- <strong>Not protected</strong> – The write cache is force-enabled. Thus, the write cache accepts write operations even if write data could be lost due to no battery present or a bad battery on the controller.</td>
</tr>
<tr>
<td></td>
<td>- <strong>This status also indicates that the battery is being reconditioned.</strong></td>
</tr>
<tr>
<td>Active, protected</td>
<td>The status of the write cache for this array is as follows:</td>
</tr>
<tr>
<td></td>
<td>- <strong>Active</strong> – The write cache can accept write operations from the array.</td>
</tr>
<tr>
<td></td>
<td>- <strong>Protected</strong> – The write cache is enabled only if a battery is present and its status is OK.</td>
</tr>
<tr>
<td></td>
<td>- **This status also indicates that the controller’s battery is present and its status is OK.</td>
</tr>
<tr>
<td>Inactive, battery low</td>
<td>The status of the write cache for this array is as follows:</td>
</tr>
<tr>
<td></td>
<td>- <strong>Inactive</strong> – The write cache cannot accept write operations from the array.</td>
</tr>
<tr>
<td></td>
<td>- <strong>Battery low</strong> – This controller’s battery power is low.</td>
</tr>
<tr>
<td>Inactive, battery not present</td>
<td>The status of the write cache for this array is as follows:</td>
</tr>
<tr>
<td></td>
<td>- <strong>Inactive</strong> – The write cache cannot accept write operations from the array.</td>
</tr>
<tr>
<td></td>
<td>- <strong>Battery not present</strong> – This controller has no battery.</td>
</tr>
<tr>
<td>Inactive, battery reconditioning</td>
<td>The status of the write cache for this array is as follows:</td>
</tr>
<tr>
<td></td>
<td>- <strong>Inactive</strong> – The write cache cannot accept write operations from the array.</td>
</tr>
<tr>
<td></td>
<td>- <strong>Battery low</strong> – The controller’s battery is being reconditioned.</td>
</tr>
</tbody>
</table>
Table 5-7. Values for Write Cache Status (Continued)

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactive, cache disabled</td>
<td>The status of the write cache for this array is as follows:</td>
</tr>
<tr>
<td></td>
<td>■ Inactive – The write cache cannot accept write operations from the array.</td>
</tr>
<tr>
<td></td>
<td>■ Cache disabled – The user disabled the write cache by using the container set cache command and setting the appropriate switches.</td>
</tr>
<tr>
<td>Inactive, write not supported</td>
<td>The status of the write cache for this array is as follows:</td>
</tr>
<tr>
<td></td>
<td>■ Inactive – The write cache cannot accept write operations from the array.</td>
</tr>
<tr>
<td></td>
<td>■ Battery not supported – This controller does not support a battery.</td>
</tr>
</tbody>
</table>

Related Information

container commands:

■ container list (page 5-54)
■ container set cache (page 5-97)
■ container show cache (page 5-110)
**container show failover**

To display a list of failover disks assigned to an array, use the `container show failover` command. You assign failover disks to an array with the `container set failover` command.

**Syntax**

```
container show failover [{container}]
```

**Parameters**

- `{container}`
  
  Specifies the ID number (0 to 63) of the array whose assigned failover disk(s) you want to display. If you do not specify this parameter, the command displays all arrays and their assigned failover disk(s).

**Examples**

The following example shows the failover disks assigned to array 0:

AAC0>container show failover 0  
Executing: container show failover 0  
container Scsi C:ID:L  
--------- ----------------------------------  
0 0:03:0 0:04:0

The example shows that array 0 was assigned disks 0:03:0 and 0:04:0 as failover disks.

**Related Information**

container commands:

- `container remove failover` (page 5-86)
- `container set failover` (page 5-101)
container Commands

container split

To split a mirror set or a multilevel array of mirror sets into two separate single-partition volume sets or two multilevel arrays of single-partition volume sets, use the container split command. Once this command completes execution, the two volume sets cannot be merged.

Before using this command to split an array, shut down system applications (such as, databases) in order to flush application data to the controller.

When you split a mirror set or a multilevel array of mirror sets, the system creates a new (referred to as the split) array. The split array contains half of the storage data from the original (referred to as the master) array (mirror set). In addition, the split array has an identical copy of the data from the old disk at the time of the split operation.

On Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only), the split array’s file system may be inconsistent and you should verify and repair it as follows:

- Assign a drive letter to the split array using the container assign drive_letter command.
- Run the Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only) CHKDSK command with the /F switch. See your Windows documentation for information on how to use the CHKDSK command.

On UnixWare, before splitting a mirror set that contains a volume table of contents, run the edvtoc command and change the volume label to a series of twelve spaces. You can then use the container split command to split the mirror set.

Syntax

container split {container}
Adaptec SCSI RAID Software Reference Guide

Parameters
{container}

Specifies the ID number (0 to 63) of the array (mirror set or multilevel array of mirror sets) to split into two separate arrays.

Examples
Before splitting a mirror set or a multilevel array of mirror sets, use the container list command to obtain information about any existing arrays. As the following example shows, there is one existing array (array 0, a mirror set) on this controller at the time the mirror set is split:

AAC0>container list
Executing: container list

<table>
<thead>
<tr>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Size</th>
<th>Ctr Size</th>
<th>Usage C:ID:L Offset:Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>F:</td>
<td>0</td>
<td>Mirror</td>
<td>10.0MB</td>
<td>NTFS</td>
<td>0:02:0 64.0KB: 10.0MB</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The following example shows how to split a mirror set:

AAC0>container split 0
Executing: container split 0
container 1 created

On UNIX systems, the message displayed after you execute the container split command includes the root special file associated with the newly created split array.
Use the `container list` command after using the `container split` command to display information about the split mirror set, as in the following example:

```
AAC0>container list
Executing: container list
```

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>C:ID:L Offset:Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 0</td>
<td>Volume 10.0MB</td>
<td>NTFS</td>
<td>0:02:0 64.0KB: 10.0MB</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Volume 10.0MB</td>
<td>NTFS</td>
<td>0:02:0 10.0MB: 10.0MB</td>
<td></td>
</tr>
</tbody>
</table>

The following list describes the change to the display as the result of splitting a mirror set with the `container split` command:

- **Num Label** column displays the IDs (in the example, 0 and 1) of the split mirror set. Array 0 is the master array; array 1 is the split array.

- This column also displays the label(s) assigned to the array(s) when the array(s) was created. If no label(s) was assigned to the array(s) then no label(s) appears in the column.

- On UNIX systems, the root special file associated with the array also appears in this column.

- **Type** column displays *Volume* as the array type for a split mirror set.

- **Usage** column displays NTFS to indicate that file systems exist on both arrays. You can create an NTFS or FAT file system on an array by using the `container format` command.

- **Scsi C:ID:L** column displays the SCSI device IDs for the disk on which the split mirror set (now two volume sets) reside. In the example, the SCSI device ID is 0:02:0.

- **Partition Offset:Size** column displays the partition offsets and sizes for the partition associated with the split mirror set (now two volume sets).

  If a partition is dead, the “:” (colon) in the **Partition Offset:Size** column changes to a “!” (exclamation point). See the disk remove dead_partitions (page 7-9) command for more information on dead partitions.
Related Information

container commands:
- container create mirror (page 5-5)
- container create mmirror (page 5-9)
- container list (page 5-54)
- container unmirror (page 5-123)

disk commands:
- disk remove dead_partitions (page 7-9)
container Commands

container unlock

Caution: Use the container unlock command only under the direction of Technical Support.

To unlock an array so it can be moved, deleted, made read-only, and used to create a multilevel array, use the container unlock command.

Syntax

container unlock {container}

Parameters

{container}

Specifies the ID number (0 to 63) of the array to unlock.

Examples

Before unlocking an array, use the container list command (with the /full switch) to obtain information about any existing arrays. As the following example shows, there is an array 0 (a volume set) on this controller. Note that the Lk column displays an L, which indicates that array 0 was previously locked with the container lock command:

AAC0>container list /full

Executing: container list /full=TRUE

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Size</th>
<th>Ctr Size</th>
<th>Usage</th>
<th>C:ID:L</th>
<th>Lk</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 0</td>
<td>Volume 10.0MB</td>
<td>NTFS</td>
<td>0:02:0</td>
<td>L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the example eliminates some items in the container list display so that you can see an example of the Lk column.
The following example shows how to unlock array 0:

AAC0>container unlock 0
Executing: container unlock 0

Use the `container list` command (with the `/full` switch) after using the `container unlock` command to display information about the unlocked array, as in the following example:

AAC0>container list /full
Executing: container list /full=TRUE

<table>
<thead>
<tr>
<th>Num</th>
<th>Total</th>
<th>Oth Stripe</th>
<th>Scsi</th>
<th>Dr</th>
<th>Label</th>
<th>Type</th>
<th>Ctr Size</th>
<th>Usage</th>
<th>C:ID:L</th>
<th>Lk</th>
</tr>
</thead>
<tbody>
<tr>
<td>F: 0</td>
<td>Volume</td>
<td>10.0MB</td>
<td>NTFS</td>
<td>0:02:0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note that the example eliminates some items in the `container list` display so that you can see an example of the Lk column.

As a result of unlocking an array (in this example, array 0) with the `container unlock` command, the Lk column displays a blank (instead of an L) to indicate that the specified array is now unlocked.

**Related Information**

- container commands:
  - `container list` (page 5-54)
  - `container lock` (page 5-65)
**container unmirror**

To unmirror a mirror set, resulting in a single-partition volume set and freespace, use the `container unmirror` command. Note that there is no equivalent command for a multilevel array of mirror sets. To unmirror a multilevel array of mirror sets, use this command for each underlying mirror set.

**Syntax**

```
container unmirror {container}
```

**Parameters**

{container}

Specifies the ID number (0 to 63) of the mirror set to unmirror. You previously created the mirror set by using the `container create mirror` or `container create mmirror` command.

**Examples**

Before unmirroring a mirror set, use the `container list` command to obtain information about any existing arrays. As the following example shows, there is one existing array (array 0, a mirror set) on this controller at the time the mirror set is unmirrored:

```
AAC0> container list
Executing: container list

Num Total Oth Stripe Scsi
Dr Label Type Size Ctr Size Usage C:ID:L State
-- ------ ------ ------ ------ ------- -------- -----
0 Mirror 10.0MB NTFS 0:02:0 0:03:0 Normal

```

Note that the example eliminates some items in the `container list` display so that you can see an example of the **State** column.
Adaptec SCSI RAID Software Reference Guide

The following example shows how to unmirror a mirror set from the mirror set that resides on SCSI device (0,3,0):

AAC0>container unmirror 0
Executing: container unmirror 0

Note that the example eliminates some items in the container list display so that you can see an example of the State column.

The following list describes the changes to the display as a result of using the container unmirror command:

- The Type column displays Volume, which indicates that the mirror set was created from a Volume set.
- The State column displays a blank space instead of Normal. The Normal state is displayed only for mirror sets.
- The Scsi C:ID:L column displays only one SCSI ID.
- The Partition Offset:Size column displays only one partition offset and size.

If a partition is dead, the “:” (colon) in the Partition Offset:Size column changes to a “!” (exclamation point). See the disk remove dead_partitions (page 7-9) command for more information on dead partitions.

Related Information

container commands:
- container create mirror (page 5-5)
- container list (page 5-54)

disk commands:
- disk remove dead_partitions (page 7-9)
controller Commands

In this Chapter

controller details 6-2
controller firmware compare 6-7
controller firmware save 6-8
controller firmware update 6-10
controller list 6-11
controller pause_io 6-13
controller rescan 6-16
controller reset_scsi_channel 6-17
controller resume_io 6-18
controller set automatic_failover 6-19
controller set array_verify 6-21
controller show automatic_failover 6-23
controller show channels 6-24
controller show array_verify 6-27
controller details

To display details about the currently opened controller and software, use the `controller details` command. These details include the controller type and software revision levels.

Syntax

```
controller details
```

Examples

The following example shows sample output as a result of using the `controller details` command:

```
AAC0> controller details
Executing: controller details
Controller Information

Remote Computer: YETI
Device Name: AAC0
Controller type: Adaptec 5400S
Access Mode: READ-WRITE
Controller serial number: Last six digits = 8A277A
 Number of Channels: 4
 Devices per Channel: 15
 Controller CPU: Strong Arm 110
 Controller CPU speed: 233 Mhz
 Controller Memory: 144 Mbytes
 Battery State: Ok

Component Revisions

 CLI: 3.0-0 [Build #5523]
 API: 3.0-0 [Build #5523]
 Miniport Driver: 3.0-0 [Build #5131]
 Controller Software: 3.0-0 [Build #5478]
 Controller BIOS: 3.0-1 [Build #5523]
 Controller Firmware: [Build #5478]
 Controller Hardware: 3.3
```

The following sections provide more information on the items that the `controller details` command displays.
controller Commands

Device Name Item
The Device Name: item displays the name of the controller. This is the controller name specified when you opened the controller with the open command. In the example, the controller name is AAC0.

The Controller type Item
The Controller type: item displays the controller type. In the example, the controller type is Adaptec 5400S.

The Access Mode Item
The Access Mode: item displays the access mode of the controller. The command displays the value READ-WRITE if you opened the controller for read-write operations. Otherwise, it displays READ-ONLY if you opened the controller for read-only operations.

The Controller serial number Item
The Controller serial number: item displays the controller serial number. The command displays the last six hexadecimal characters of the controller serial number. These six hexadecimal characters match the last six characters displayed on the “SN =” sticker located on the controller itself.

The Number of Channels and Devices per Channel Items
The Number of Channels: item displays the number of channels actually found on the controller. In the example, the number of channels on the controller is four.

The Devices per Channel: item displays the number of SCSI disk devices that can be put onto each SCSI channel for this controller. In the example, 15 SCSI disks can be put onto each SCSI channel.

The Controller CPU Item
The Controller CPU: item displays the type of central processing unit (CPU) that the controller uses. The controller details command can display the controller CPU type listed in Table 6-1.
Table 6-1. Controller CPU Types

<table>
<thead>
<tr>
<th>Controller CPU Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strong Arm 110</td>
<td>The CPU type on the controller is a Digital Strong Arm 110. The example uses this CPU type.</td>
</tr>
</tbody>
</table>

The Controller CPU Speed and Controller Memory Items

The Controller CPU Speed: item (if available) displays the clock speed (in megahertz) of the CPU that resides on the controller. In the example, the speed is 233 Mhz.

The Controller Memory: item displays the total amount of memory on the controller that programs and buffer data can use. In the example, the total memory is 48 MB.

The Battery State Item

The Battery State: item displays the state of the controller’s battery. The controller details command can display the battery states listed in Table 6-2.

Table 6-2. Battery States

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ok</td>
<td>The battery is in good working condition.</td>
</tr>
<tr>
<td>Reconditioning</td>
<td>The battery is in the recondition state.</td>
</tr>
<tr>
<td>Low</td>
<td>The battery is low on power.</td>
</tr>
<tr>
<td>Not Present</td>
<td>The battery has no power or there is no battery present on the controller.</td>
</tr>
</tbody>
</table>
The Component Revisions Items

Table 6-3 describes each of the Component Revisions items. This information is useful if you ever need to contact a technical support representative.

Table 6-3. Component Revision Items

<table>
<thead>
<tr>
<th>Component Revision Item</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLI:</td>
<td>Displays the revision level of the Command Line Interface. In the example, the revision level is 3.0-0 (Build #5523).</td>
</tr>
<tr>
<td>API:</td>
<td>Displays the revision level of the controller’s application programming interface (API). In the example, the revision level is 3.0-0 (Build #5478).</td>
</tr>
<tr>
<td>Service:</td>
<td>Displays the revision level of the network services software. This item displays only if the open controller resides on a remote computer. In the example, the revision level is 2.1-0 (Build #2881).</td>
</tr>
<tr>
<td>Remote API:</td>
<td>Displays the revision level of the API that the network services software uses on the remote computer. This item displays only if the open controller resides on a remote computer. In the example, the revision level is 2.1-0 (Build #2881).</td>
</tr>
<tr>
<td>Miniport Driver:</td>
<td>Displays the version number of the miniport portion of the AAC.SYS device driver. This item displays only if the controller runs the AAC.SYS device driver. In the example, the revision level is 3.0-0 (Build #5131).</td>
</tr>
<tr>
<td>Controller Software:</td>
<td>Displays the revision level of the controller software. In the example, the revision level is 3.0-0 (Build #5478).</td>
</tr>
<tr>
<td>Controller BIOS:</td>
<td>Displays the revision level of the controller BIOS. In the example, the revision level is 3.0-1 (Build #5523).</td>
</tr>
<tr>
<td>Controller Firmware:</td>
<td>Displays the revision level of the firmware. In the example, the revision level is (Build #5478).</td>
</tr>
<tr>
<td>Controller Hardware:</td>
<td>Displays the version of the controller hardware. In the example, the version is 3.3.</td>
</tr>
</tbody>
</table>
Related Information

General control commands:

- open (page 4-3)
controller firmware compare

To compare the contents of each of the flash components on a controller to the corresponding image in a pair of user flash image (UFI) files and indicate whether they match, use the controller firmware compare command.

Syntax

ccontroller firmware compare
[/C{{controller_ID}}][{controller_ID}...]
[/D{UFI_file_path}]

Switches

/C{controller_ID}

Specifies the controller ID representing the set of controllers on which to perform the firmware comparison.

If you do not specify this switch, this command compares the flash components on controller 0.

/D{UFI_file_path}

Specifies the path where the pair of UFI files are located.

If you do not specify this switch, this command compares the flash components against the pair of UFI files in the current default drive and directory.

Examples

The following example compares the contents of a controller’s flash components to the corresponding image in a pair of UFI files.

AACO> controller firmware compare D:\
Executing: controller firmware compare "D:\"

The controller’s firmware matches the firmware in the specified flash image files.

Related Information:

controller commands:

- controller firmware save (page 6-8)
- controller firmware update (page 6-10)
controller firmware save

To save the contents of a controller’s flash in a pair of user flash image (UFI) files, use the controller firmware save command. The names of the pair of UFI files are based on the controller type and cannot be changed.

Syntax

ccontroller firmware save [/C{controller_ID}][{controller_ID}...]{/D{UFI_file_path}}

Switches

/C{controller_ID}

Specifies the controller ID representing the set of controllers on which to perform the firmware save.

If you do not specify this switch, this command saves the flash components on controller 0.

/D{UFI_file_path}

Specifies the path where the pair of UFI files are located. Use this switch to specify the drive and directory where you want to create the pair of UFI files.

If you do not specify this switch, this command creates the pair of UFI files in the current default drive and directory.

Examples

The following example saves the contents of the opened controller’s flash components to a pair of UFI files. In the example, one file is specified. A second file is also created with the same name, except that the number of file name suffix is incremented by 1.

AAC0> controller firmware save D:\aac\backup...

Executing: controller firmware save "D:\aac\backup..."
Related Information:

controller commands:

- controller firmware compare (page 6-7)
- controller firmware update (page 6-10)
controller firmware update

To update a controller’s flash components from the flash image data in a pair of user flash image (UFI) files, use the controller firmware update command. This command can update the flash components on a single controller or multiple controllers.

Syntax

controller firmware update
  [/C{controller_ID}] [{controller_ID}...]  
  [/D{UFI_file_path}]

Switches

/C{controller_ID}
  Specifies the controller ID representing the set of controllers on which to perform the firmware update.
  If you do not specify this switch, the firmware update is performed on controller 0.

/D{UFI_file_path}
  Specifies the path where the pair of UFI files are located.
  If you do not specify this switch, this command looks for or creates a pair of UFI files in the current default drive and directory.

Examples

The following example updates a controller’s firmware.

AAC0> controller firmware update D:\...
  Executing: controller firmware compare "D:\..."
  !!The controller’s firmware has been successfully updated; you need to restart the system!!.

Related Information:

controller commands:

- controller firmware compare (page 6-7)
- controller firmware save (page 6-8)
controller list

To list all controllers on a specified computer or display specific information about the currently opened controller, use the controller list command.

Syntax

controller list [/domain={string}] [{string}]

Parameters

{string}

Specifies the computer name from which you want to display a list of controllers or specific information about the currently opened controller. If you do not specify a computer name, the command displays only the controllers on the local computer.

Switches

/domain{=string}

Specifies the domain in which the specified computer resides.

If you do not specify this switch, the command assumes the local domain.

This switch is supported on the following operating systems:

- Windows NT
- Windows 2000 (basic disk only)
- Windows XP (basic disk only)

Examples

The following example shows how to list all controllers on a local computer:

AAC0> controller list

Executing: controller list

<table>
<thead>
<tr>
<th>Adapter Name</th>
<th>Adapter Type</th>
<th>Availability</th>
</tr>
</thead>
<tbody>
<tr>
<td>\AAC0</td>
<td>Adaptec 5400S</td>
<td>read/write</td>
</tr>
</tbody>
</table>

The following sections provide descriptions of the items in the display.
The Adapter Name and Adapter Type Items

The Adapter Name item displays the name(s) of all controllers on the local or remote computers. In the example, there is only one controller on the local computer and it is called AAC0.

The Adapter Type item displays the controller type. In the example, the controller type is Adaptec 5400S.

The Availability Item

The Availability item displays the availability of the controller. Table 6-4 lists the values that can display in this item.

<table>
<thead>
<tr>
<th>Controller Availability</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unavailable</td>
<td>The controller is not available.</td>
</tr>
<tr>
<td>Unknown</td>
<td>The controller availability is unknown.</td>
</tr>
<tr>
<td>read only</td>
<td>The controller is available for read-only access.</td>
</tr>
<tr>
<td>read/write</td>
<td>The controller is available for read/write access. In the example, the controller is available for read/write access.</td>
</tr>
</tbody>
</table>

Related Information

controller commands:

- controller details (page 6-2)
controller pause_io

To pause all I/O activity on the currently opened controller, use the `controller pause_io` command. While I/O activity is paused, you can make changes to devices attached to the controller without rebooting. For example, you can add, remove, or change SCSI channel assignments.

Before using this command, you should consider the following points:

- The `controller pause_io` command allows a maximum delay of 150 seconds (that is, 2 1/2 minutes) for all I/O activity on the currently opened controller. This delay is based on an internal driver timeout (not on any network timeout) of three minutes.

- The network timeout is *client-based*, and different clients are likely to have different timeout values. Thus, pausing all I/O activity on the open controller can cause network timeouts, particularly if the specified delay is for more than one minute.

- If you find it necessary to pause the system for more than a minute, then network timeouts are usually preferable to rebooting.

- Taking the maximum delay of 2 1/2 minutes increases the chances that a network timeout will occur. If you cannot perform the hardware reconfiguration changes in less than 2 1/2 minutes, then you should shut down the system. Even if you take the maximum delay, you can usually resume the I/O sooner. This is the reason for making the pause I/O default time 2-1/2 minutes.

- The safest amount of time (that is, timeouts are unlikely to occur) to delay I/O operations is no more than 30 seconds.
Command And Switch Availability

This command is supported on the following operating systems:

- Windows NT
- Windows 2000 (basic disk only)
- Windows XP (basic disk only)
- NetWare

Notes

The controller automatically performs a rescan of the SCSI channel before the I/O is resumed.

Using this command when there is a pagefile on an array could cause unexpected behavior.

Use of the controller pause_io command is not permitted while an array task is running on the controller. (Use the task list command to display a list of currently running array tasks.)

Syntax

ccontroller pause_io [{integer}]

Parameters

{integer}

Specifies the amount of time, in seconds, to cause the controller to wait before automatically resuming I/O.

The parameter defaults to the maximum value of 150 seconds. This is necessary because the controller resume_io command may not be able to access the controller under some circumstances.

Examples

The following example pauses all I/O activity on the currently opened controller for 100 seconds:

AAC0> controller pause_io 100
Executing: controller pause_io 100
Related Information

controller commands:
  ■ controller resume_io (page 6-18)

task commands:
  ■ task list (page 10-2)
controller rescan

To rescan the SCSI channels on the currently opened controller and update all underlying structures, use the controller rescan command. The effect of this command is to verify currently connected disks or to recognize new disks added to the channel.

This command rescans the disks for the arrays and loads the volatile array and the partition tables from disks again. If nothing on the disks has changed, controller rescan should have no visible effect. However, if any disk partition structures have changed, this command causes those changes to be reflected in the array and partition lists in the controller memory. If you add disks to the controller, the rescan enables you to use those disks.

Syntax

controller rescan
controller reset_scsi_channel

To reset a specific SCSI channel, use the controller reset_scsi_channel command.

Syntax

controller reset_scsi_channel
{integer}

Parameters

{integer}

Specifies the controller channel (for example, 0, 1, 2, 3, etc.) on which you want to reset this SCSI channel. See the installation guide for your controller to determine the number of channels it actually supports.

Examples

The following example resets the SCSI channel on channel 1:

AAC0>controller reset_scsi_channel 1
Executing: controller reset_scsi_channel 1
controller resume_io

To rescan the SCSI channels and resume all I/O activity on the currently opened, previously paused controller, use the controller resume_io command. You use this command after pausing the controller with the controller pause_io command.

Syntax
controller resume_io

Examples
The following example resumes all I/O activity on the currently paused controller:

AAC0> controller resume_io
Executing: controller resume_io

Related Information
controller commands:

■ controller pause_io (page 6-13)
controller Commands

controller set automatic_failover

Automatic failover allows you to replace a failed disk with a replacement disk. The controller then automatically assigns the disk you insert as a failover disk without your having to first assign it with the array set failover or array set global_failover command.

Note that the automatic failover feature works only with disks that reside in a SAF-TE enclosure management device.

To turn on or off automatic failover for the specified controller, use the controller set automatic_failover command.

Caution: The controller deletes any data on the replacement disk when automatic failover is enabled and you remove the failed disk and insert the replacement disk in the failed disk’s slot.

Notes

A failover disk is a disk that you configure to automatically recover data from a failed partition/disk in a redundant array. To assign one or more failover disks for a single array, you use the array set failover command. To assign one or more failover disks for all arrays, you use the array set global_failover command. Although all array types accept failover assignments, only mirror sets and RAID-5 sets use the failover assignment if a disk fails. (Mirror sets and RAID-5 sets are often referred to as redundant arrays). The main characteristic of these commands is that you must “manually” assign the failover disk to one or more arrays. In fact, you might consider the previously described failover mechanism as “manual failover”.

The controller will assign a replacement drive as a failover disk only if the serial number of the drive is different from the serial number of the drive it replaces.

Syntax

controller set automatic_failover
[/failover_enabled{=boolean}]
/failover_enabled{=boolean}
Specifies whether to turn on or off automatic failover on the specified controller. You must set this switch to TRUE if you want to turn on automatic failover on the specified controller.

To turn off automatic failover on the specified controller, set this switch to FALSE. The command defaults to TRUE, which means the command turns on automatic failover on the specified controller.

**Examples**

Before turning the automatic failover feature on or off, check its status by using the `controller show automatic_failover` command.

The following example shows that the controller’s automatic failover is currently off (disabled):

```
AAC0> controller show automatic_failover
Executing: controller show automatic_failover
Automatic failover DISABLED
```

The following example turns on (enables) the automatic failover feature for the currently opened controller:

```
AAC0> controller set automatic_failover /failover_enabled
Executing: controller set automatic_failover /failover_enabled=TRUE
```

The `controller show automatic_failover` command indicates that the controller’s automatic failover is currently on (enabled):

```
AAC0> controller show automatic_failover
Executing: controller show automatic_failover
Automatic failover ENABLED
```

**Related Information**

array commands:

- array set failover (page 5-101)

- array set global_failover (page 5-103)

controller commands:

- `controller show automatic_failover` (page 6-23)
controller set array_verify

To enable or disable the array verify operation, use the controller set verify command. This command allows you to enable or disable the array verify operation for all arrays controlled by the specified controller.

Syntax

controller set array_verify
[/verify_enabled{=boolean}]

/verify_enabled{=boolean}

Specifies whether to turn on or off the array verify feature on the specified controller. You must set this switch to TRUE if you want to turn on array verify for all arrays associated with the specified controller.

To turn off the array verify feature on the specified controller, set this switch to FALSE. The command defaults to TRUE, which means the command turns on the array verify feature on the specified controller.

Examples

Before turning the array verify feature on or off, check its status by using the controller show array_verify command. The following example shows that the controller’s array verify feature is currently off (disabled):

AAC0> controller show array_verify
Executing: controller show array_verify
Array verify DISABLED

The following example turns on (enables) the array verify feature for the currently opened controller:

AAC0> controller set array_verify /verify_enabled
Executing: controller set array_verify /verify_enabled=TRUE
The **controller show array_verify** command indicates that the controller’s array verify feature is currently on (enabled). The command also displays the number of errors (if any) found as a result of the array verify operation.

AAC0> controller show array_verify

Executing: controller show array_verify
Array verify ENABLED
Errors found 0

**Related Information**

**controller commands:**

- **controller show array_verify** (page 6-27)
controller show automatic_failover

To display the automatic failover status (enabled or disabled) for the specified controller, use the controller show automatic_failover command.

Syntax

ccontroller show automatic_failover

Examples

The following example shows that the controller’s automatic failover is currently off (disabled):

AAC0> controller show automatic_failover
Executing: controller show automatic_failover
Automatic failover DISABLED

Related Information

array commands:

- array set failover (page 5-101)
- array set global_failover (page 5-103)

ccontroller commands:

- controller set automatic_failover (page 6-19)
controller show channels

To show all of the channels on a controller and the associated characteristics of each channel, use the `controller show channels` command. See the installation guide for your controller to determine the number of channels it actually supports.

Syntax

```
controller show channels
```

Examples

In the following example, the system displays the channels on the currently opened controller:

```
AAC0> controller show channels
Executing: controller show channels
Ch# Host ID Targets Type Max Usage
--- ------- ------- --------- ---------
0 7 15 NoInfo NoInfo
1 7 15 NoInfo NoInfo
2 7 15 NoInfo NoInfo
3 7 15 NoInfo NoInfo
```

The following example displays the channels on the currently opened controller:

```
AAC0> controller show channels
Executing: controller show channels
Ch# Host ID Targets Type Max Usage
--- ------- ------- --------- ---------
0 7 15 NoInfo NoInfo
1 7 15 NoInfo NoInfo
2 7 15 NoInfo NoInfo
3 7 15 NoInfo NoInfo
```

The following sections provide more information on the items that the `controller show channels` command displays.

The Ch# and Host ID Items

The Ch# item displays the number of the channel on the controller. In the example there are four channels on the currently opened controller. See the installation guide for your controller to determine the number of channels it actually supports.
controller Commands

The Host ID item displays the SCSI device ID of the host controller, which in the example is 7 for all channels.

The Targets and Type Items

The Targets item displays the number of SCSI device IDs not including the controller ID, which in the example is 15 for all channels.

The Type item displays the SCSI channel type the channel is capable of supporting, which in the example is NoInfo for all channels. The controller show channels command can display the SCSI channel types listed in Table 6-5.

Table 6-5. SCSI Channel Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fast</td>
<td>The controller supports SCSI channel type Fast. This channel type is not currently supported.</td>
</tr>
<tr>
<td>FastWide</td>
<td>The controller supports SCSI channel type FastWide. This channel type is not currently supported.</td>
</tr>
<tr>
<td>FibreChnl</td>
<td>The controller supports SCSI channel type Fibrechannel. This channel type is not currently supported.</td>
</tr>
<tr>
<td>NoInfo</td>
<td>No information is available on the SCSI channel type supported by this controller.</td>
</tr>
<tr>
<td>Slow</td>
<td>The controller supports SCSI channel type Slow. This channel type is not currently supported.</td>
</tr>
<tr>
<td>SlowWide</td>
<td>The controller supports SCSI channel type SlowWide. This channel type is not currently supported.</td>
</tr>
<tr>
<td>Ultra</td>
<td>The controller supports SCSI channel type Ultra. This channel type is not currently supported.</td>
</tr>
<tr>
<td>Ultra2LVD</td>
<td>The controller supports SCSI channel type Ultra2LVD.</td>
</tr>
<tr>
<td>UltraWide</td>
<td>The controller supports SCSI channel type UltraWide.</td>
</tr>
<tr>
<td>Unknown</td>
<td>The controller SCSI channel type that the controller supports is unknown.</td>
</tr>
</tbody>
</table>
The Max Usage Item

The Max Usage item displays the best speed the channel is running at, which in the example is NoInfo for all channels. If drives other than Ultra-2 are present on the system, the entire channel is limited to UltraWide.

Related Information

controller commands:

- controller details (page 6-2)
controller show array_verify

To display the array verify status (enabled or disabled) for the specified controller, use the `controller show array_verify` command.

**Syntax**

```
controller show array_verify
```

**Examples**

Before turning the array verify feature on or off, check its status by using the `controller show array_verify` command.

The following example shows that the controller’s automatic failover is currently on (enabled). The command also displays the number of errors (if any) found as a result of the array verify operation.

```
AAC0> controller show array_verify
Executing: controller show array_verify
Array verify ENABLED
Errors found 0
```

**Related Information**

controller commands:

- `controller set array_verify` (page 6-21)
disk Commands

In this Chapter

disk blink 7-2
disk initialize 7-3
disk list 7-5
disk remove dead_partitions 7-9
disk set default 7-10
disk set smart 7-12
disk show default 7-15
disk show defects 7-16
disk show partition 7-18
disk show smart 7-21
disk show space 7-25
disk verify 7-28
disk zero 7-30

Use the following syntax for disk commands:

disk command [object] [/switch=value] [parameter]
disk blink

To cause a SCSI disk access light to blink (or stop blinking), use the disk blink command.

**Syntax**

disk blink [/wait{=boolean}] {scsi_device} {integer}

**Parameters**

{scsi_device}

Specifies the ID for the SCSI disk you want to blink. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the scsi_device section on page 3-7 for more information on how to specify the SCSI device.

{integer}

Specifies the number of seconds you want the SCSI disk to blink. A value of zero (0) stops the SCSI disk from blinking.

**Switches**

/wait{=boolean}

Specifies whether to perform verification synchronously or asynchronously. If you set this switch to TRUE, the command performs the block verification synchronously and the command prompt does not return until the block verification operation completes.

The default is FALSE; the command performs the block verification asynchronously and the command prompt returns immediately.

**Examples**

The following example causes SCSI channel number 1, SCSI device ID 2, and SCSI device logical unit number 0 to blink for fifty-five seconds:

AAC00>disk blink (1,2,0) 55
Executing: disk blink (CHANNEL=1,ID=2,LUN=0) 55
**disk Commands**

**disk initialize**

To initialize a SCSI disk for use with the currently opened controller, use the `disk initialize` command. This command writes data structures to the disk so that the controller can use the disk.

**Syntax**

```plaintext
disk initialize [/always{=boolean}] [/unconditional{=boolean}] {scsi_device}
```

**Parameters**

{scsi_device}

Specifies the ID for the SCSI disk you want to prepare and initialize for controller use. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the `scsi_device` section on page 3-7 for more information on how to specify the SCSI device.

**Switches**

/always{=boolean}

Specifies whether to initialize the disk even if the disk has data on it. If you specify `TRUE` for this switch, the command initializes the disk even if it has data on it. If arrays on the disk have open files, this command cannot be used. In other words, you need to close all open files before you use this command to initialize a SCSI disk.

The default behavior for the command is `FALSE`; that is, the `disk initialize` command does not initialize a disk that has data on it. Specifying `/always` overrides this behavior.

/unconditional{=boolean}

Specifies whether to initialize the disk even if arrays on the disk have open files. If you specify `TRUE` for this switch, the command initializes the disk even if the disk has open files.
The default is FALSE; that is, the disk *initialize* command does not initialize a disk that has open files on it.

**WARNING:** Unconditionally deleting an array that is in use can cause a system crash under some circumstances.

**Examples**

The following example initializes a SCSI disk device (SCSI channel number 0, SCSI device ID 2, and SCSI device logical unit number 0) that has data on it:

```
AAC0>disk initialize /always (0,2,0)
Executing: disk initialize /always=TRUE (CHANNEL=0,ID=2,LUN=0)
```
disk Commands

**disk list**

To display a list of the disks available on the currently opened controller, use the `disk list` command.

**Syntax**

```
disk list [/all{=boolean}] [/full{=boolean}] [{scsi_device}]
```

**Parameters**

`{scsi_device}`

Specifies the ID for a specific SCSI device for which you want to display information. A SCSI device consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the `scsi_device` section on page 3-7 for more information on how to specify the SCSI device.

**Switches**

`/all{=boolean}`

Specifies whether to display a list of all SCSI devices. If you set this switch to TRUE, the command displays a list of all SCSI devices on the controller.

This switch defaults to FALSE if you specify `scsi_device`. Otherwise, the switch defaults to TRUE.

`/full{=boolean}`

Specifies whether to display detailed information. If you specify TRUE, the command displays detailed information. If you specify FALSE, the command does not display detailed information.

This switch defaults to FALSE.

**Examples**

The following example shows how to display nondetailed information for all of the SCSI disks on the currently opened controller:
AAC0>disk list
Executing: disk list

<table>
<thead>
<tr>
<th>C:ID:L</th>
<th>Device Type</th>
<th>Blocks</th>
<th>Bytes/Block</th>
<th>Usage</th>
<th>Shared Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00:0</td>
<td>Disk</td>
<td>8887200</td>
<td>512</td>
<td>Initialized</td>
<td>NO 40</td>
</tr>
<tr>
<td>2:01:0</td>
<td>Disk</td>
<td>8887200</td>
<td>512</td>
<td>Initialized</td>
<td>NO 40</td>
</tr>
<tr>
<td>2:02:0</td>
<td>Disk</td>
<td>8496960</td>
<td>512</td>
<td>Initialized</td>
<td>NO 40</td>
</tr>
<tr>
<td>2:03:0</td>
<td>Disk</td>
<td>8887200</td>
<td>512</td>
<td>Initialized</td>
<td>NO 40</td>
</tr>
</tbody>
</table>

The detailed disk list display contains the previous columns of information plus the following columns:

- Removable media
- Vendor-ID
- Product-ID
- Rev

The following sections provide more information on the columns of information that the disk list command displays.

**The C:ID:L Column**

The C:ID:L column displays the SCSI device channel number, the SCSI device ID, and the SCSI device logical unit number for each disk on the currently opened controller. (The display shows only one disk if you specified a particular disk.)

In the example, the command displays the SCSI channel number, the SCSI device ID, and the SCSI device logical unit number for the four disks on the open controller.

**The Device Type Column**

The Device Type column displays the SCSI device type. The disk list command can display one of the values listed in Table 7-1.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disk</td>
<td>The device type is a SCSI direct access device. Typically, these are disk drives. This value appears in the example.</td>
</tr>
<tr>
<td>Sequential</td>
<td>The device type is a SCSI sequential access device; typically, tape drives.</td>
</tr>
</tbody>
</table>

7-6
### disk Commands

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Printer</td>
<td>The device type is a SCSI printer device.</td>
</tr>
<tr>
<td>Processor</td>
<td>The device type is a processor device.</td>
</tr>
<tr>
<td>Write once</td>
<td>The device type is a SCSI write once and read many times device. Typically, these devices are referred to as WORM disk drives.</td>
</tr>
<tr>
<td>CDROM</td>
<td>The device type is a SCSI CD-ROM (read-only direct access device).</td>
</tr>
<tr>
<td>Scanner</td>
<td>The device type is a SCSI scanner device.</td>
</tr>
<tr>
<td>Optical</td>
<td>The device type is a SCSI optical disk device.</td>
</tr>
<tr>
<td>Medium changer</td>
<td>The device type is a SCSI medium changer device; typically, a changer for a Jukebox.</td>
</tr>
<tr>
<td>Network</td>
<td>The device type is a SCSI network communication device.</td>
</tr>
</tbody>
</table>

### The Removable media Column

The **Removable media** column displays the value **Y** if the media in the device is removable and the value **N** if the media in the device is not removable.

### The Vendor-ID and Product-ID Columns

The **Vendor-ID** column displays a string of characters that identifies the vendor of the SCSI device.

The **Product-ID** column displays a string of characters that identifies the product line associated with the SCSI device.

### The Rev Column

The **Rev** column displays the revision number of the SCSI device.

### The Block Column

The **Block** column displays the number of blocks available on the SCSI device.

### The Bytes/Block Column

The **Bytes/Block** column displays the number of bytes for each block on the SCSI device.
Adaptec SCSI RAID Software Reference Guide

The Usage Column

The Usage column displays the usage of the SCSI device. The disk list command can display one of the values listed in Table 7-2.

Table 7-2. SCSI Disk Device Usage Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detached</td>
<td>The system detected that the diskset in the detached state. When a diskset is detached, it is not available for use.</td>
</tr>
<tr>
<td>DOS</td>
<td>The SCSI device was prepared for use (initialized) with MS-DOS partitions.</td>
</tr>
<tr>
<td>Initialized</td>
<td>The SCSI device was prepared for use (initialized) with arrays.</td>
</tr>
<tr>
<td>Not Initialized</td>
<td>The SCSI device was not prepared for use (initialized) with arrays.</td>
</tr>
<tr>
<td>Offline</td>
<td>The SCSI device was present at boot time. However, the device is either removed from the controller or it failed.</td>
</tr>
<tr>
<td>Unowned</td>
<td>The controller does not own the SCSI device.</td>
</tr>
</tbody>
</table>

The Shared Column

The Shared column displays the value YES if the device resides on a shared channel and the value NO if the device does not reside on a shared channel. In the example, the devices do not reside on a shared channel.

The Rate Column

The Rate column displays the negotiated speed of the SCSI device, in megabytes per second.

Related Information

disk commands:
- disk initialize (page 7-3)
- disk show partition (page 7-18)
- disk show space (page 7-25)
disk Commands

**disk remove dead_partitions**

To remove all dead partitions from a SCSI disk, use the `disk remove dead_partitions` command. A dead partition is a partition that is no longer used by any array.

Typically, you use this command only under specific circumstances. For example, if you remove a disk from a redundant array and then later add the disk to the controller, the partition on the reinserted disk (which was previously part of the redundant array) is no longer useful. In this case, you use this command and specify the disk that was added to the controller again.

If a partition is dead, the “:” (colon) in the Partition Offset:Size column (displayed with the `array list` command) changes to a “!” (exclamation point).

**Syntax**

```
disk remove dead_partitions {scsi_device}
```

**Parameters**

 `{scsi_device}`

Specifies the ID for the SCSI disk from which you want to remove all dead partitions. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the `scsi_device` section on page 3-7 for more information on how to specify the SCSI device.

**Examples**

The following example removes all dead partitions that reside on a SCSI disk device (SCSI channel number 0, SCSI device ID 2, and SCSI device logical unit number 0):

```
AAC0>disk remove dead_partitions {0,02,0}
```

Executing: `disk remove dead_partitions {CHANNEL=0,ID=2,LUN=0}`
Related Information

array commands:

- array list (page 5-54)
disk set default

To set the default SCSI ID for use in subsequent CLI commands, use the `disk set default` command. This command allows you to set defaults for a specific SCSI device’s SCSI device channel number and SCSI device logical unit number. Then, in subsequent commands, you need only specify the SCSI device ID on the command line.

**Syntax**

disk set default {scsi_device}

**Parameters**

{scsi_device}

Specifies the ID for the SCSI device. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), a SCSI device ID (0 through 15 inclusive), and a SCSI device logical unit number (0 through 7 inclusive). See the `scsi_device` section on page 3-7 for more information on how to specify the SCSI device.

If you do not specify a SCSI device ID, the command displays an appropriate error message.

**Examples**

The following example sets the SCSI channel number and SCSI default logical unit number for SCSI device (0,3,0) as the default for use in subsequent CLI commands:

AAC0>disk set default (1,3,0)
Executing: disk set default (CHANNEL=1,ID=3,LUN=0)

You need only specify the SCSI device ID in subsequent CLI commands, and the CLI assumes the default SCSI channel number and SCSI logical unit number as follows:

AAC0>disk list 3
Executing: disk list (ID=3)

<table>
<thead>
<tr>
<th>C:</th>
<th>ID</th>
<th>L</th>
<th>Device Type</th>
<th>Blocks</th>
<th>Bytes/Block</th>
<th>Usage</th>
<th>Shared</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2:03:0</td>
<td>Disk</td>
<td>4197405</td>
<td>512</td>
<td>Initialized</td>
<td>NO</td>
<td></td>
</tr>
</tbody>
</table>
See the disk list command for information on the items in the display.

**Related Information**

disk commands:
- disk list ([page 7-5](#))
- disk show default ([page 7-15](#))
**disk set smart**

To change a device’s S.M.A.R.T. configuration, use the `disk set smart` command. The acronym S.M.A.R.T. stands for Self-Monitoring, Analysis and Reporting Technology. This technology is an industry standard for hard drives that monitors a variety of disk parameters, such as the rate of read-write errors. In addition, S.M.A.R.T. can send an alert to system administrators about potential problems caused by disk errors.

This command allows you to make the following changes related to S.M.A.R.T.:

- Enable or disable S.M.A.R.T. configuration for all disks on the system
- Clear the S.M.A.R.T. error count for the specified disk
- Enable or disable S.M.A.R.T. exception reporting

**Syntax**

```bash
disk set smart [/all={boolean}] [/clear={boolean}]
[/enable_exceptions={boolean}] [/logerr={boolean}]
[/perf={boolean}] [/report_count={integer}]
[/update={boolean}] [{scsi_device}]
```

**Parameters**

`{scsi_device}`

Specifies the ID for the SCSI disk on which you want to change S.M.A.R.T. configurations. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the `scsi_device` section on page 3-7 for more information on how to specify the SCSI device.

You do not need to specify a SCSI ID if you use the `/all` switch.
Switches

/all{=boolean}

Specifies whether to enable S.M.A.R.T. configurations (enable exception reporting) for all disks on the system. If you specify TRUE for this switch, the command enables S.M.A.R.T. configurations for all disks on the system.

The default is FALSE; the disk set smart command does not enable S.M.A.R.T. configurations for all disks on the system. In this case, you would want to specify a SCIS ID to enable S.M.A.R.T. configurations for a specific disk on the system.

/clear{=boolean}

Specifies whether to clear S.M.A.R.T. error counts for the specified disk or disks. If you specify TRUE for this switch, the command clears error counts for the specified disk or disks.

The default is FALSE; that is, the disk set smart command does not clear S.M.A.R.T. error counts for disks on the system.

/enable_exceptions{=boolean}

Specifies whether to enable S.M.A.R.T. exceptions reporting for the specified disk or disks. If you specify TRUE for this switch, the command enables exception reporting for the specified disk or disks.

The default is FALSE; that is, the disk set smart command does not enable S.M.A.R.T. exception reporting for disks on the system.

/interval_timer{=integer} <>

/logerr{=boolean}

Specifies whether to enable logging of S.M.A.R.T. exception reporting for the specified disk or disks. If you specify TRUE for this switch, the command enables logging of S.M.A.R.T. exception reporting for the specified disk or disks.

If you specify FALSE for this switch, the command disables logging of S.M.A.R.T. exception reporting for the specified disk or disks.
/mrie={integer} <?>
/perf={boolean}

Specifies whether to report exceptions according to the MRIE mode taking into account performance. If you specify TRUE for this switch, the command performs exception reporting as long as performance is not an issue. If performance is an issue, the command does not report exceptions.

If you specify FALSE for this switch, exceptions are reported according to the MRIE mode regardless of performance issues.

/report_count={integer}

Specifies the number of times an exception can be reported. The value 0 (zero) indicates that there is no limit to the number of times an exception can be reported.

/update={boolean}

Specifies whether to update the number of device errors found on the specified SCSI device. If you specify TRUE for this switch, the command updates the number of device errors found on the specified SCSI device.

If you specify FALSE for this switch, the command does not update the number of device errors found on the specified SCSI device.

Examples

The following example enables S.M.A.R.T. configurations on one SCSI disk device (SCSI channel number 1, SCSI device ID 2, and SCSI device logical unit number 0):

AAC0>disk set smart (1,2,0)
Executing: disk set smart (CHANNEL=1,ID=2,LUN=0)

Related Information
disk commands:

- disk show smart (page 7-21)
**disk show default**

To display the current default for the SCSI device ID, use the `disk show default` command. You previously set this default using the `disk set default` command.

**Syntax**

disk show default

**Examples**

The following example shows the default for a SCSI device ID that was set in a previous use of the `disk set default` command:

```
AAC0>disk show default
Executing: disk show default
Default Scsi: (CHANNEL=0,ID=3,LUN=0)
```

If no default for a SCSI device was previously specified, the command displays an appropriate message.

**Related Information**

disk commands:

- `disk set default` (page 7-10)
disk Commands

disk show defects

To show the number of defects and/or the defect list for a specific SCSI disk drive, use the disk show defects command.

Syntax

disk show defects [/full{=boolean}] {scsi_device}

Parameters

{scsi_device}

Specifies the ID for the SCSI device for which you want to display defect information. A SCSI device consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the scsi_device section on page 3-7 for more information on how to specify the SCSI device.

Switches

/full{=boolean}

Specifies whether to display the defect count and the list of disk defects. If you set this switch to TRUE, the command displays the list of defects and the number of defects.

This switch defaults to FALSE, which means the command displays only the number of defects.

Examples

The following example lists the number of defects and the list of defects for a SCSI disk device (SCSI channel number 1, SCSI device ID 0, and SCSI logical unit number 0):

AAC0> disk show defects /full=TRUE (1,0,0)

Number of PRIMARY defects on drive: 2
Defect 1 at cylinder 12, head 5, sector 59
Defect 2 at cylinder 550, head 1, sector 44
Number of GROWN defects on drive: 0
Adaptec SCSI RAID Software Reference Guide

The following list explains the items in the display:

■ Number of PRIMARY defects on drive:
  This item shows the details regarding any primary disk defects. In the example, there are two defects.
  ■ Defect 1 at cylinder 12, head 5, sector 59
    This item shows where defect 1 occurred. In the example, the defect occurred on head 5 of cylinder 12 located in sector 59.
  ■ Defect 2 at cylinder 550, head 1, sector 44
    This item shows where defect 2 occurred. In the example, the defect occurred on head 1 of cylinder 550 located in sector 44.
    The command shows any additional defects.

■ Number of GROWN defects on drive: 0
  This item shows the list of grown defects (if any). In the example, there are no grown defects, so the command displays the value 0 (zero).
disk show partition

To display a list of partitions on the disks attached to the currently opened controller, use the `disk show partition` command.

Syntax

disk show partition

Examples

The following example shows a sample output from the `disk show partition` command:

AAC0>disk show partition
Executing: disk show partition
Scsi Partition Array MultiLevel
C:ID:L Offset:Size Num Type Num Type R/W
------ ------------- --- ------ --- ------ ---
0:02:0 64.0KB:20.0MB 0 Volume 0 None RW

The following sections provide more information on the columns that the `disk show partition details` command displays.

The SCSI C:ID:L Columns

The C:ID:L column displays the SCSI channel number, the SCSI device ID, and the SCSI device logical unit number for each disk on the currently opened controller.

In the example, the command displays the SCSI channel number, the SCSI device ID, and the SCSI device logical unit number for one disk (0:02:0) on the currently opened controller.

The Partition Offset:Size Column

The Partition Offset:Size column displays the offset (in bytes) into the SCSI device and the size of the partition (in bytes). In the example, the offset is 64.0 KB and the size is 20.0 MB.

If a partition is dead, the “;” (colon) in the Partition Offset:Size column changes to a “!” (exclamation point). See the `disk remove dead_partitions` command for more information on dead partitions.
Adaptec SCSI RAID Software Reference Guide

The Array Num and Array Type Columns

The **Array Num** column displays the ID of the primary array in the partition. In the example, the array ID is 0.

The **Array Type** column displays the type of array in which the partition resides. Table 7-3 lists the possible values that the command can display in the Type column.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>This partition is not in an array.</td>
</tr>
<tr>
<td>Mirror</td>
<td>This partition is part of a mirror set.</td>
</tr>
<tr>
<td>Stripe</td>
<td>This partition is part of a stripe set.</td>
</tr>
<tr>
<td>Volume</td>
<td>This partition is part of a volume set.</td>
</tr>
<tr>
<td>RAID-5</td>
<td>This partition is part of a RAID-5 set.</td>
</tr>
<tr>
<td>Reconf</td>
<td>This partition is part of an array reconfiguration operation. An array reconfiguration operation occurs when you use the <code>array reconfigure</code> command to change an array from one type to another. The Reconf value is not used in UNIX.</td>
</tr>
</tbody>
</table>

The MultiLevel Num and MultiLevel Type Columns

The **MultiLevel Num** column displays the ID of the multilevel array the partition is associated with (if any). In the example, the array ID is 0.

The **MultiLevel Type** column displays the type of multilevel array in which the partition resides. Table 7-4 lists the possible values that the command can display in the Type column.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>This partition is not in a secondary array.</td>
</tr>
<tr>
<td>Stripe</td>
<td>This partition is part of a stripe set.</td>
</tr>
<tr>
<td>Volume</td>
<td>This partition is part of a volume set.</td>
</tr>
</tbody>
</table>
The R/W Column

The R/W column displays whether the partition is read-only or read-write. Specifically, the column can display the values listed in Table 7-5.

Table 7-5. R/W Array Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>RO</td>
<td>The partition is read-only.</td>
</tr>
<tr>
<td>RW</td>
<td>The partition is read-write.</td>
</tr>
</tbody>
</table>
Adaptec SCSI RAID Software Reference Guide

**disk show smart**

To display S.M.A.R.T. configuration information for one or all disks, use the `disk show smart` command. The acronym S.M.A.R.T. stands for Self-Monitoring, Analysis and Reporting Technology. This technology is an industry standard for hard drives that monitors a variety of disk parameters, such as the rate of read-write errors. In addition, S.M.A.R.T. can send an alert to system administrators about potential problems caused by disk errors.

**Syntax**

disk show smart [/all{=boolean}] [/full{=boolean}] [/view_changeable{=boolean}] [{scsi_device}]

**Parameters**

{scsi_device}  
Specifies the ID for the SCSI disk for which you want to display S.M.A.R.T. configuration information. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the `scsi_device` section on page 3-7 for more information on how to specify the SCSI device.

You do not need to specify a SCSI ID if you use the `/all` switch.

**Switches**

/all{=boolean}  
Specifies whether to display S.M.A.R.T. configuration information for all disks on the system. If you specify `TRUE` for this switch, the command displays S.M.A.R.T. configuration information for all disks on the system.

This switch defaults to `TRUE`.

/full{=boolean}  
Specifies whether to display detailed S.M.A.R.T. configuration information for one or all SCSI disks. If you specify `TRUE`, the command displays detailed S.M.A.R.T. configuration information.
information. If you specify FALSE, the command does not display detailed S.M.A.R.T. configuration information.

This switch defaults to FALSE.

/view_changeable{=boolean}

Specifies whether to display the configuration information that can be set on a S.M.A.R.T. disk. If you specify TRUE for this switch, the command displays the letter “X” in the column for the configuration information that can be set. For example, an “X” appears in the Enable Exception Control column for those S.M.A.R.T. disks on which this value can be set.

This switch defaults to FALSE.

Examples

The following example shows how to display nondetailed S.M.A.R.T. configuration information for all disks on the system:

AAC0>disk show smart

Executing: disk show smart

<table>
<thead>
<tr>
<th>C:ID:L</th>
<th>Device Capable</th>
<th>Informational</th>
<th>Exception</th>
<th>Performance</th>
<th>Error Count</th>
<th>Method of</th>
<th>Enable Exception Control Enabled</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:00:0</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:01:0</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:02:0</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3:03:0</td>
<td>N</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The detailed disk show smart display contains the previous columns of information plus the following columns:

■ Log Errors

■ Interval Timer (secs.)

■ Report Count

The following sections provide more information on the columns that the disk show smart command displays.

The C:ID:L Column

The C:ID:L column displays the SCSI channel number, the SCSI device ID, and the SCSI device logical unit number for each disk on
the currently opened controller. (The display shows only one disk if you specified a particular disk.)

In the example, the command displays the SCSI channel number, the SCSI device ID, and the SCSI device logical unit number for the four disks on the open controller.

**The Smart Capable Device Column**

The *Smart Capable Device* column displays the value Y if the device is S.M.A.R.T. capable or the value N if the device is not S.M.A.R.T. capable.

**The Method of Informational Exceptions (MRIE) Column**

The *Method of Informational Exceptions (MRIE)* column displays the MRIE value (one of a possible six values). However, you cannot set the MRIE. Your devices report exceptions only when polled (level 6) and you cannot change the setting for this switch.

**The Enable Exception Control Column**

The *Enable Exception Control* column displays the value Y if you enabled S.M.A.R.T. exception control reporting or the value N if you did not enable S.M.A.R.T. exception control reporting.

If you specified the `/view_changeable` switch, the command displays an X in this column for those disks on which you can enable S.M.A.R.T. exception control reporting.

**The Performance Enabled Column**

The *Performance Enabled* column displays the value Y if you enabled performance or N if you did not enable performance. You enable performance by using the `disk set smart` command’s `/perf` switch.

If you specified the `/view_changeable` switch, the command displays an X in this column for those disks on which you can enable performance.

**The Log Errors Column**

The *Log Errors* column displays the value Y if you enabled log errors or N if you did not enable log errors. You enable log errors by using the `disk set smart` command’s `/logerr` switch.
If you specified the /view_changeable switch, the command displays an X in this column for those disks on which you can enable log errors.

**The Interval Timer (secs.) Column**

The Interval Timer (secs.) column displays the number of seconds specified for the exception reporting interval. If you specified the /view_changeable switch, the command displays an X in this column for those disks on which you can set the number of seconds for the exception reporting interval.

**The Report Count Column**

The Report Count column displays the number of times you specified for exceptions to be reported. You specify this number by using the disk set smart command’s /report_count switch.

**The Error Count Column**

The Error Count column displays the number of errors that S.M.A.R.T. encountered on the disk.

If you specified the /view_changeable switch, the command displays an X in this column for those disks on which you can enable the recording of errors that S.M.A.R.T. encounters on the disk.

**Related Information**

disk commands:

- disk set smart (page 7-12)
disk show space

To display space usage information on a SCSI disk, use the disk show space command.

Syntax

disk show space [/all{=boolean}] [{scsi_device}]

Parameters

{scsi_device}

Specifies the ID for the SCSI device for which you want to display space usage information. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), a SCSI device ID (0 through 15 inclusive), and a SCSI device logical unit number (0 through 7 inclusive). See the scsi_device section on page 3-7 for more information on how to specify the SCSI device.

Switches

/all{=boolean}

Specifies whether to show space usage information for all SCSI disks on the currently opened controller. If you set this switch to TRUE, the command shows space usage information for all SCSI disks on the currently opened controller.

This switch defaults to FALSE if you specify the scsi_device parameter; otherwise, the switch defaults to TRUE.

Examples

The following example shows space usage information for all of the SCSI disks on the currently opened controller:

AAC0>disk show space
Executing: disk show space
Scsi C:ID:L Usage Size
----------- --------- -------------
0:02:0 Array 64.0KB: 20.0MB
0:02:0 Free 20.0MB: 29.0MB
0:03:0 Free 64.0KB: 49.0MB
0:04:0 Free 64.0KB: 49.0MB
0:05:0 Free 64.0KB: 49.0MB
The following example shows space usage information for SCSI disk device (0,2,0):

AAC0>disk show space (0,2,0)
Executing: disk show space (ID=2)

<table>
<thead>
<tr>
<th>Scsi C:ID:L</th>
<th>Usage</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:02:0</td>
<td>Array</td>
<td>64.0KB: 20.0MB</td>
</tr>
<tr>
<td>0:02:0</td>
<td>Free</td>
<td>20.0MB: 29.0MB</td>
</tr>
</tbody>
</table>

The following sections provide more information on the columns that the `disk show space` command displays.

**The Scsi C:ID:L Column**

The Scsi C:ID:L column displays the SCSI channel number, the SCSI device ID, and the SCSI device logical unit number for each disk on the currently opened controller. (The display shows only one disk if you specified a particular disk.)

In the first example, the command displays the SCSI channel number, the SCSI device ID, and the SCSI device logical unit number for the six disks on the open controller. In the second example, the command displays information for the specified SCSI device (0:02:0).

**The Usage Column**

The Usage column displays the type of partition or some characteristic related to disk space usage. Specifically, the command can display the values listed in Table 7-6.

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free</td>
<td>This area is unused space on the disk. In the example, a specific area is unused space on the 0:02:0 disk. This unused space is typically referred to as freespace.</td>
</tr>
<tr>
<td>Array</td>
<td>This partition is used as part of an array. In the example, a partition on the 0:02:0 disk is used as part of an array.</td>
</tr>
<tr>
<td>Orphan</td>
<td>This area was part of an array that could not be configured.</td>
</tr>
<tr>
<td>Dead</td>
<td>This area had an error and was declared dead.</td>
</tr>
<tr>
<td>Conflict</td>
<td>This area is not configured because of a conflict.</td>
</tr>
</tbody>
</table>
The Size Column

The Size column displays the offset (in bytes) into the SCSI device and the size of the partition or space (in bytes). In the example, the offset and sizes for the first two disks are as follows:

- For the 0:02:0 disk
  
  The offset is **64.0 KB** for the partition and **20.0 MB** for the unused space. The size is **20.0 MB** for the partition and **29.0 MB** for the unused space.

- For the 0:03:0 disk
  
  The offset is **64.0 KB** and the size is **49.0 MB** for the unused space. (This disk has no partitions on it.)

  The offset is **64.0 KB** and the size is **49.0 MB** for the unused space. (This disk has no partitions on it.)
disk Commands

disk verify

To verify all blocks on a SCSI disk device and, optionally, repair any bad blocks, use the `disk verify` command.

**Syntax**

disk verify [/repair{=boolean}] [/wait{=boolean}] {scsi_device}

**Parameters**

{scsi_device}

Specifies the ID for the SCSI disk device that you want to verify. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), a SCSI device ID (0 through 15 inclusive), and a SCSI logical unit number (0 through 7 inclusive). See the `scsi_device` section on page 3-7 for more information on how to specify the SCSI device.

**Switches**

/repair{=boolean}

Specifies whether to automatically repair bad blocks. If you set this switch to TRUE, the command attempts to repair any bad blocks. If you do not specify the switch, the command only reports failures.

This switch defaults to FALSE.

/wait{=boolean}

Specifies whether to perform verification synchronously or asynchronously. If you set this switch to TRUE, the command performs the block verification synchronously and the command prompt does not return until the block verification operation completes.

The default is FALSE; that is, the command performs the block verification asynchronously and the command prompt returns immediately.
Examples

The following example synchronously verifies and repairs all blocks on disk (0,2,0):

AAC0> disk verify /repair=TRUE /wait=TRUE (0,2,0)

Executing: disk verify (CHANNEL=0,ID=2,LUN=0)

As the command executes, note the title bar of the DOS window displays the status of the command. For example:

Stat:OK!Task:100,Func:SCV,State:RUN 97.2%

See page 3-9 for detailed information on the status information that the command displays in the title bar as it executes the task.
**disk zero**

To clear an entire SCSI disk, use the `disk zero` command. When you clear a disk, all data is erased and cannot be recovered.

**Command And Switch Availability**

This command and its associated switch (or switches) are supported on the following operating systems:

- Windows NT
- Windows 2000 (basic disk only)
- Windows XP (basic disk only)
- NetWare

**Syntax**

```
disk zero [/always{=boolean}] [/wait{=boolean}] {scsi_device}
```

**Parameters**

`{scsi_device}`

Specifies the ID for the SCSI disk you want to clear. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). See the `scsi_device` section on page 3-7 for more information on how to specify the SCSI device.

**Switches**

`/always{=boolean}`

Specifies whether to clear the disk, even if it has data on it. If you specify `TRUE`, the command clears the disk even if it has data on it.

The default behavior for the command is `FALSE`; the command clears the disk only if it has no data on it. Specifying `/always` overrides this behavior.

In both cases, all user files must be closed. The `/always` switch cannot override this restriction.
/wait{=boolean}

Specifies whether to clear the disk synchronously or asynchronously. If you set this switch to TRUE, the command clears the disk synchronously and the command prompt does not return until the clear disk task completes.

The default is FALSE; the command clears the disk asynchronously and the command prompt returns immediately.

Examples

The following example clears SCSI disk (0,2,0). There is data on the disk. However, the data is not deemed important and thus the /always switch is used:

AAC0> disk zero /always /wait (0,2,0)

Executing: disk zero /always=TRUE /wait=TRUE (CHANNEL=0, ID=2, LUN=0)

As the command executes, note the title bar of the DOS window displays the status of the command. For example:

Stat:OK! Task:100, Func:SCZ, State:RUN 97.2%

See page 3-10 for detailed information on the status information that the command displays in the title bar as it executes the task.
diagnostic Commands

In this Chapter

- diagnostic clear boot_parameters 8-2
- diagnostic dump structures 8-3
- diagnostic dump text 8-4
- diagnostic load_arrays 8-6
- diagnostic moderation set count 8-7
- diagnostic moderation set timer 8-8
- diagnostic moderation show count 8-9
- diagnostic moderation show timer 8-10
- diagnostic set boot_parameter 8-11
- diagnostic show boot_parameter 8-12
- diagnostic show history 8-13

The diagnostic commands are used to help fix problems that can occur during controller operation. The diagnostic commands should be used only under the direction of technical support.

Use the following syntax for diagnostic commands:

diagnostic command [/switch=value] [parameter]
diagnostic clear boot_parameters

To clear all boot-time parameters contained in the currently opened controller’s parameters, use the diagnostic clear boot_parameters command. Under normal conditions, no boot-time parameters are set.

Caution: Use this command only under the direction of technical support.

Syntax

diagnostic clear boot_parameters

Examples

The following example clears all boot-time parameters:

AAC0> diagnostic clear boot_parameters
Executing: diagnostic clear boot_parameters
All boot time parameters cleared to default values.

Related Information

diagnostic commands:

- diagnostic set boot_parameter (page 8-11)
- diagnostic show boot_parameter (page 8-12)
diagnostic dump structures

To save internal data structures to a file for use by technical support, use the **diagnostic dump structures** command.

**Caution:** Use this command only under the direction of technical support.

**Syntax**

diagnostic dump structures

**Parameters**

{string}

Specifies the name of the file to contain the internal data structures. Use the file naming conventions associated with the operating system on which the controller is running.

For example, if your controller is running under Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only), use the Windows NT/Windows 2000/Windows XP file name conventions. If the file name has spaces, use quotation marks (""“) to enclose the string.

**Examples**

The following example saves the internal data structures to a file called c:\aac0loginfo\dump.txt on a Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only) system:

AAC0>diagnostic dump structures c:\aac0loginfo\dump.txt
Executing: diagnostic dump structures "c:\aac0loginfo\dump.txt"

**Related Information**

diagnostic commands:

- diagnostic dump text (page 8-4)

logfile commands:

- logfile start (page 9-3)
diagnostic dump text

To display diagnostic information on the console display for use by technical support during bug reporting, use the diagnostic dump text command.

Caution: Use this command only under the direction of technical support.

Notes

Before using this command on Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only), you might want to make sure to set up your MS-DOS window to scroll data. See your Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only) documentation.

Before using this command on other operating systems, you might want to make sure your windowing system is set up to scroll data. See your operating system documentation.

You might also want to use the logfile start command to make sure the diagnostic-related information gets sent to the logfile.

Syntax

diagnostic dump text
Examples
The following example displays diagnostic information on the console display:

AAC0>diagnostic dump text
Executing: diagnostic dump text
Partitions:6

The command displays a variety of information in table format. It also displays:

*** HISTORY BUFFER FROM LAST RUN ***
[00]:
 *** HISTORY BUFFER FROM CURRENT CONTROLLER RUN ***
[00]:
==============
Dump Complete.

Related Information
diagnostic commands:

■ diagnostic dump structures (page 8-3)
diagnostic load_arrays

To load arrays when the system is in maintenance mode, use the diagnostic load_arrays command. This command differs from controller rescan in that it does not rescan the SCSI channel.

---

Caution: Use this command only under the direction of technical support.

---

Syntax

```
diagnostic load_arrays
```

Examples

The following example allows arrays to be loaded:

```
AAC0>diagnostic load_arrays
Executing: diagnostic load_arrays
All boot time parameters cleared to default values.
```

Related Information

controller commands:

- controller rescan (page 6-16)
diagnostic moderation set count

To set the default interrupt count on the controller, use the diagnostic moderation set count command.

Caution: Use this command only under the direction of technical support.

Syntax

diagnostic moderation set count {integer}

Parameters

{integer}

Specifies the value (for example, 700) you want to set as the default interrupt count on the controller. The interrupt count is the number of outstanding requests on the controller needed before the delay time (the time specified by the diagnostic set timer command) takes effect. For example, if the interrupt count is set to 32 and the delay time is set to 10, the controller batches I/O request responses for one millisecond only if there are more than 32 I/Os outstanding in the one millisecond interval.

Related Information

diagnostic commands:

- diagnostic moderation set timer (page 8-8)
- diagnostic moderation show count (page 8-9)
- diagnostic moderation show timer (page 8-10)
diagnostic moderation set timer

To set the default interrupt timer on the controller, use the diagnostic moderation set timer command.

Caution: Use this command only under the direction of technical support.

Syntax

diagnostic moderation set timer {integer}

Parameters

{integer}

Specifies the value (for example, 10) you want to set as the default interrupt timer on the controller. The interrupt timer is the delay time in 100 microsecond units before the controller issues an interrupt to the host computer. For example if the interrupt timer is set to 10, the controller batches I/O request responses for one millisecond and issues an interrupt to the host computer.

The default interrupt timer is 0 (zero).

Related Information

diagnostic commands:

- diagnostic moderation set count (page 8-7)
- diagnostic moderation show count (page 8-9)
- diagnostic moderation show timer (page 8-10)
**diagnostic moderation show count**

To display the number of outstanding I/Os necessary to allow the delay of I/O request responses to the host computer, use the `diagnostic moderation show count` command. You may have previously specified the default interrupt count (the number of outstanding I/Os) with the `diagnostic moderation set count` command.

---

**Caution:** Use this command only under the direction of technical support.

---

**Syntax**

diagnostic moderation show count

**Related Information**

diagnostic commands:

- diagnostic moderation set count (page 8-7)
- diagnostic moderation set timer (page 8-8)
- diagnostic moderation show timer (page 8-10)
diagnostic moderation show timer

To display the time in 100 microsecond units that the controller batches I/O request responses before issuing an interrupt to the host computer, use the diagnostic moderation show timer command. You may have previously specified the default interrupt timer (the time in 100 microsecond units) with the diagnostic moderation set timer command.

Caution: Use this command only under the direction of technical support.

Syntax

diagnostic moderation show timer

Related Information

diagnostic commands:
  ■ diagnostic moderation set count (page 8-7)
  ■ diagnostic moderation set timer (page 8-8)
  ■ diagnostic moderation show count (page 8-9)
diagnostic set boot_parameter

To set boot-time parameters that a technical support representative might need, use the diagnostic set boot_parameter command.

Caution: Use this command only under the direction of technical support.

Syntax

diagnostic set boot_parameter

Parameters

{string}
   Specifies the name of the boot-time parameter to be set. If you need to use this command, a technical support representative will tell you the name of the boot-time parameter to use.

{integer}
   Specifies the value for the boot-time parameter specified in the string parameter. If you need to use this command, a technical support representative will tell you the value to use.

Related Information

diagnostic commands:
   ■ diagnostic clear boot_parameters (page 8-2)
   ■ diagnostic show boot_parameter (page 8-12)
diagnostic show boot_parameter

To display a specific boot-time parameter (if one exists) that a technical support representative might need, use the diagnostic show boot_parameter command.

Caution: Use this command only under the direction of technical support.

Syntax

diagnostic show boot_parameter

Parameters

{string}

Specifies the boot-time parameter character string whose associated value you want to display. If you need to use this command, a technical support representative will tell you the name of the boot-time parameter to use.

Related Information

diagnostic commands:

- diagnostic clear boot_parameters (page 8-2)
- diagnostic set boot_parameter (page 8-11)
diagnostic Commands

**diagnostic show history**

To display an internal history log of operations kept in the currently opened controller that a technical support representative might need, use the `diagnostic show history` command.

**Syntax**

```
diagnostic show history [/old{=boolean}] [/current{=boolean}]
```

**Switches**

`/old{=boolean}`

Specifies whether to display the controller’s operations history log from the previous boot of the operating system. If you set this switch to TRUE, the command displays the history log from the previous boot of the operating system.

If you do not specify any switches, the command displays the history log from the previous boot of the operating system (in other words this switch defaults to TRUE).

If you set this switch and the `/current` switch to FALSE, the command displays an appropriate error message and stops executing.

`/current{=boolean}`

Specifies whether to display the controller’s operations history log from the currently running system. If you set this switch to TRUE, the command displays the log from the currently running system.

This switch defaults to FALSE.
logfile Commands

In this Chapter

logfile end 9-2
logfile start 9-3

Use the following syntax for logfile commands:
logfile command [/switch=value] [parameter]
logfile end
To end the logging of all output, use the logfile end command.

Syntax
logfile end

Examples
The following example stops logging information to the file aac01og17Nov01.txt (which was previously started with the logfile start command):
AAC0> logfile end
Executing: logfile end
Log file closed.

Related Information
logfile commands:
  ■ logfile start (page 9-3)
logfile Commands

logfile start
To begin the logging of all CLI command line activity to a specified file, use the logfile start command. CLI command line activity includes the associated output the CLI command displays.

The CLI continues to log command output until you close the CLI or you explicitly end the logfile with the logfile end command.

Syntax
logfile start [/append{=boolean}] {string}

Parameter
{string}
  Specifies the name of the file to contain CLI command line activity. On Windows, use the Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only) file name conventions. If the file name has spaces, use quotation marks (""") to enclose the string.
  On NetWare, use the NetWare file name conventions.
  On UNIX, use the UNIX file name conventions.

Switches
/append{=boolean}
  Specifies whether to append all CLI command line activity to an existing output file, if one exists. If you set this switch to TRUE, the command appends the CLI command line activity to the file specified in {string}.
  This switch defaults to FALSE (that is, the command does not append CLI command line activity to an existing output file).

Examples
The following example (Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only)) logs all output to a file called c:\ctrloginfo\aac0log17Nov01.txt.
The .txt extension allows the file to be read by the Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only) Notepad application:

AAC0> logfile start c:\ctrlogin\aac0log17Nov01.txt
Executing: logfile start "c:\ctrlogin\aac0log17Nov01.txt"
File c:\ctrlogin\aac0log17Nov01.txt receiving all output.

The following example (Windows NT/Windows 2000 (basic disk only)/Windows XP (basic disk only)) logs subsequent output to an existing file:

AAC0> logfile start /append c:\ctrlogin\aac0log17Nov01.txt
Executing: logfile start /append=TRUE "c:\ctrlogin\aac0log17Nov01.txt"
File c:\ctrlogin\aac0log17Nov01.txt receiving all output.

Related Information
logfile commands:

■ logfile end (page 9-2)
task Commands

In this Chapter

- task list 10-2
- task resume 10-8
- task stop 10-10
- task suspend 10-12

Use the following syntax for task commands:

```
task command [/switch=value] [parameter]
```
task list

To display a list of one or all tasks running on the currently opened controller, use the `task list` command. A task is an operation that occurs only on the controller, asynchronous to all other operations. Clearing a disk, creating a file system, and creating a mirror set are examples of tasks done on the controller.

The command displays an appropriate message if there are no tasks running on the controller.

Syntax

```
task list [/all={boolean}]
```

Parameters

{integer}

Specifies the task ID for the task whose information you want to display. You need to perform a `task list /all` to display all tasks and their associated IDs.

Switches

```
/all={boolean}
```

Specifies whether to display all currently running tasks. If you set this switch to TRUE, the command displays a list of all tasks running on the currently opened controller.

This switch defaults to FALSE if you specify the integer parameter; otherwise, the switch defaults to TRUE.

Examples

The following example shows typical output as a result of using the `task list` command.

```
AAC0> task list
Executing: task list
Controller Tasks
TaskId Function Done% Array State Specific1 Specific2
-------- -------- ------ ------ ------ -------- --------
101 Scrub 24.6% 0 SUS 00000000 00000000
```
As the example shows, the typical display shows the following columns of information:

- TaskId
- Function
- Done%
- Array
- State
- Specific1
- Specific2

The following sections describe each column that the `task list` command displays.

The Task ID Column

The Task ID column displays the ID number associated with a specific task. The controller software assigns each task a unique ID number.

The Function Column

The Function column displays the type of task running on the controller. Table 10-1 describes the types of tasks that the `task list` command can display.

<table>
<thead>
<tr>
<th>Task Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create</td>
<td>A create mirror set or create multilevel mirror set task is running on the specified array. When the create mirror set or create multilevel mirror set task completes, the specified array is a mirror set or a multilevel array of mirror sets. The create a mirror set or create a multilevel mirror set task runs as a result of using the <code>array create mirror</code> or <code>array create mmirror</code> command.</td>
</tr>
<tr>
<td>FATfmt</td>
<td>An array format FAT file system task is running on the specified array. The format FAT file system task runs as a result of using the <code>array format</code> command with the <code>/file_system</code> switch set to FAT.</td>
</tr>
</tbody>
</table>
### Table 10-1. Task Types (Continued)

<table>
<thead>
<tr>
<th>Task Type</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTFSfmt</td>
<td>An array format NTFS file system task is running on the specified array. The format NTFS file system task runs as a result of using the <code>array format</code> command with the <code>/file_system</code> switch set to NTFS.</td>
</tr>
<tr>
<td>Rebuild</td>
<td>A rebuild task is running on the specified array. Typically, the rebuild task runs when the controller is in a rebuild of a redundant array (RAID-5 set, mirror set, or multilevel array of mirror sets).</td>
</tr>
<tr>
<td>Reconfig</td>
<td>An array reconfigure task is running on the specified array. When the array reconfigure task completes, the specified array becomes a different array (for example, from a volume set to a stripe set). The array reconfigure task runs as a result of using the <code>array reconfigure</code> command.</td>
</tr>
<tr>
<td>Scrub</td>
<td>A scrub task is running on the specified redundant array. When the scrub task completes, the specified redundant array has reconstructed data on one partition based on data found on the other partition (for mirror sets and multilevel arrays of mirror sets). Or, the specified redundant array recalculates and replaces, if necessary, the parity information (for RAID-5 sets). The scrub task runs as a result of the <code>array scrub</code> command. The scrub task also runs as a result of the <code>array create raid5</code> command with the <code>/scrub</code> switch specified. This is the task type displayed in the example.</td>
</tr>
<tr>
<td>Unknown</td>
<td>An unknown task is running.</td>
</tr>
</tbody>
</table>
The Done% Column

The Done% column displays a running percentage value that indicates the progress of the currently running task. The display shows the percentage in tenths of a percent increments. The currently running task is complete when the Done % column displays 100%.

The Array Column

The Array column displays the ID number of the array associated with the task (if any). In the example, the array’s ID is 0 (zero).

The State Column

The State Column displays the state of the task. Table 10-2 describes the state values that the task list command can display.
Table 10-2. State Values

<table>
<thead>
<tr>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAD</td>
<td>The task failed and is no longer running.</td>
</tr>
<tr>
<td>DNE</td>
<td>The task successfully completed or the task is no longer running (that is, the task is done).</td>
</tr>
<tr>
<td>RUN</td>
<td>The task is running.</td>
</tr>
<tr>
<td>SUS</td>
<td>The task was suspended. Typically, you suspend a task with the task suspend command.</td>
</tr>
<tr>
<td>UNK</td>
<td>The controller reported an unknown status for the task.</td>
</tr>
</tbody>
</table>

The Specific1 Column

The Specific1 column displays additional information for certain tasks that appear in the Task Id column. Table 10-3 lists the tasks for which the task list command can display additional information. Table 10-3 also describes the additional information that task list can display.

Table 10-3. Additional Specific1 Information

<table>
<thead>
<tr>
<th>Task</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify: Refers to the verify with no repair of bad blocks task, which runs as a result of using the disk verify command without the /repair switch.</td>
<td>Displays the number of bad blocks found with no replacement. The example displays zeroes, which signifies no errors found.</td>
</tr>
<tr>
<td>Scrub: Refers to the scrub task, which runs as a result of using the array scrub command.</td>
<td>Displays the number of sectors that were different.</td>
</tr>
</tbody>
</table>

The Specific2 Column

The Specific2 column displays additional information for certain tasks that appear in the Task Id column. Table 10-4 lists the tasks for which the task list command can display additional information. Table 10-4 also describes the additional information that task list can display.
Table 10-4. Additional Specific2 Information

<table>
<thead>
<tr>
<th>Task</th>
<th>Additional Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verify. Refers to the verify with repair of bad blocks task, which runs as a result of using the disk verify command with the /repair switch.</td>
<td>Displays the number of bad blocks found that were replaced.</td>
</tr>
</tbody>
</table>

**Related Information**

array commands:
- array create mirror (page 5-5)
- array scrub (page 5-94)

disk commands:
- disk verify (page 7-29)
- disk zero (page 7-31)

task commands:
- task resume (page 10-8)
- task stop (page 10-10)
- task suspend (page 10-12)
task resume

To resume one or all tasks previously suspended on the currently opened controller, use the `task resume` command. You suspend tasks with the `task suspend` command.

Syntax

task resume [/all{=boolean}] [{integer}]

Parameters

{integer}

Specifies the task ID for the task to resume. Perform a `task list /all` to display the task IDs for all tasks currently suspended on the open controller before resuming a specific task or all tasks.

Switches

/all{=boolean}

Specifies whether to resume all suspended tasks. If you set this switch to TRUE, the command resumes all tasks that were suspended on the currently opened controller.

If you do not specify this switch or a valid task ID, the command displays an appropriate error message.

Examples

Before resuming a suspended task, use the `task list` command to identify any suspended tasks, as in the following example.

```
AAC0>task list
Executing: task list
TaskId Function Done% Array State Specific1 Specific2
------- --------- ------ -------- ------ ----------- -----------
 101 Scrub 24.6% 0 SUS 00000000 00000000
```

The following example shows the use of the `task resume` command to resume task 101, which was previously stopped with the `task suspend` command:

```
AAC0>task resume 101
Executing: task resume 101
```
Use the `task list` command after using the `task resume` command to display information about the task, as in the following example:

```
AAC0>task list
Executing: task list
TaskId Function Done% Array State Specific1 Specific2
------ -------- ----- ------ ----- -------- --------
 101 Scrub 24.6% 0 RUN 00000000 00000000
```

As a result of using the `task resume` command, the State column now displays `RUN` (running on the controller) instead of `SUS` (suspended on the controller).

**Related Information**

*task commands:*

- `task list` (page 10-2)
- `task suspend` (page 10-12)
task stop

To stop one or all tasks running on the currently opened controller, use the task stop command.

Syntax

task stop [/all={boolean}]

Parameters

{integer}

Specifies the task ID for the task to stop. Perform a task list /all to display the task IDs for all tasks currently running on the open controller before stopping a specific task or all tasks.

Switches

/all={boolean}

Specifies whether to stop all running tasks. If you set this switch to TRUE, the command stops all tasks that were running on the currently opened controller.

If you do not specify this switch or a valid task ID, the command displays an appropriate error message.

Examples

Before stopping a running task, use the task list command to identify any currently running tasks, as in the following example:

AAC0>task list

Executing: task list

<table>
<thead>
<tr>
<th>TaskId</th>
<th>Function</th>
<th>Done%</th>
<th>Array</th>
<th>State</th>
<th>Specific1</th>
<th>Specific2</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Scrub</td>
<td>24.6%</td>
<td>0</td>
<td>RUN</td>
<td>00000000</td>
<td>00000000</td>
</tr>
</tbody>
</table>

The following example shows the use of the task stop command to stop task 101:

AAC0> task stop 101

Executing: task stop 101

Use the task list command after using the task stop command to display information about the task, as in the following example:
task Commands

AAC0>task list
Executing: task list
No tasks currently running on controller.

Related Information

task commands:

- task list (page 10-2)
task suspend

To suspend one or all tasks running on the currently opened controller, use the `task suspend` command.

**Syntax**

```
task suspend [/all{=boolean}]
```

**Parameters**

`{integer}`

Specifies the task ID for the task to suspend. Perform a `task list /all` to display the task IDs for all tasks currently running on the open controller before suspending a specific task or all tasks.

**Switches**

`/all{=boolean}`

Specifies whether to suspend all running tasks. If you set this switch to `TRUE`, the command suspends all tasks that were running on the currently opened controller.

If you do not specify this switch or a valid task ID, the command displays an appropriate error message.

**Examples**

Before suspending a running task, use the `task list` command to identify any currently running tasks, as in the following example:

```
AAC0> task list
Executing: task list
TaskId Function Done% Array State Specific1 Specific2
----- -------- ----- --------- ----- --------- ---------
 101 Scrub 24.6% 0 RUN 00000000 00000000
```

The following example shows the use of the `task suspend` command to suspend task 101:

```
AAC0> task suspend 101
Executing: task suspend 101
```
Use the `task list` command after using the `task suspend` command to display information about the task, as in the following example:

```
AAC0>task list
Executing: task list
```

<table>
<thead>
<tr>
<th>TaskId</th>
<th>Function</th>
<th>Done%</th>
<th>Array</th>
<th>State</th>
<th>Specific1</th>
<th>Specific2</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>Scrub</td>
<td>24.6%</td>
<td>0</td>
<td>SUS</td>
<td>00000000</td>
<td>00000000</td>
</tr>
</tbody>
</table>

As a result of using the `task suspend` command, the State column now displays SUS (suspended on the controller) instead of RUN (running on the controller).

**Related Information**

- `task list` (page 10-2)
- `task resume` (page 10-8)
enclosure Commands

In this Chapter

- enclosure activate slot
- enclosure identify slot
- enclosure list
- enclosure prepare slot
- enclosure set alarm
- enclosure set door
- enclosure set fan
- enclosure set interval
- enclosure set power
- enclosure set scsiid
- enclosure set temperature
- enclosure show fan
- enclosure show power
- enclosure show slot
- enclosure show status
- enclosure show temperature
Adaptec SCSI RAID Software Reference Guide

These enclosure commands operate on enclosure management devices that support Version 1.0 of the SCSI Accessed Fault-Tolerant Enclosures (SAF-TE) specification.

Use the following syntax for enclosure commands:

```
enclosure command [/switch={value}] [parameter]
```
enclosure activate slot

To activate a device in a specified slot of the specified SAF-TE enclosure management device, use the enclosure activate slot command. Specifically, this command makes the device that resides in the slot available on the SCSI channel.

Syntax

enclosure activate slot {enclosure} {slot}

Parameters

{enclosure}

Specifies the ID associated with the enclosure management device on which you want to activate a device. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

{slot}

Specifies the unit number associated with the slot. This is the slot that contains the device you want to activate. This unit number can range from 0 to 15 inclusive. Typically, the slot unit number is limited by the physical number of device slots in the enclosure management device.

Examples

Before activating a device, you might want to use the enclosure show slot command to determine the current device state.

As the following example shows, the current device state setting is NOTACTIVATE:

AAC0>enclosure show slot 0
Executing: enclosure show slot 0

<table>
<thead>
<tr>
<th>Enclosure Slot</th>
<th>scsidf</th>
<th>Insert Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0:00:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>0:01:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>0:10:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>0:03:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>0:04:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>1:00:0</td>
<td>OK CONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>1:01:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>1:10:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
</tbody>
</table>
The following example shows how to activate a device in slot 0 of enclosure management device 0 using the enclosure activate slot command:

AAC0>enclosure activate slot 0 0
Executing: enclosure activate slot 0 0

You may want to use the enclosure show slot command again to see the change in the device slot’s status, as in the following example. Note that the OK ACTIVATE in the status column indicates that the device is activated and working properly.

AAC0>enclosure show slot 0
Executing: enclosure show slot 0

<table>
<thead>
<tr>
<th>Enclosure Slot</th>
<th>scsiId</th>
<th>Insert</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0:00:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0:01:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0:10:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0:03:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0:04:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1:00:0</td>
<td>OK CONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1:01:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1:10:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1:03:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1:04:0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
</tbody>
</table>

Related Information

enclosure commands:

- enclosure identify slot (page 11-5)
- enclosure list (page 11-7)
- enclosure prepare slot (page 11-12)
- enclosure show slot (page 11-33)
enclosure identify slot

To identify a slot on a specified SAF-TE enclosure management device, use the `enclosure identify slot` command. Typically, an enclosure management device indicates to the operator which slot is currently being identified by flashing an adjacent light.

**Syntax**

```
enclosure identify slot {enclosure} {slot}
```

**Parameters**

*{enclosure}*

Specifies the ID associated with the enclosure management device on which you want to identify a slot. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

*{slot}*

Specifies the unit number associated with the slot. This is the slot that you want the enclosure management device to identify. This unit number can range from 0 to 15 inclusive. Typically, the slot unit number is limited by the physical number of device slots in the enclosure management device.

**Switches**

`/stop{=boolean}`

Specifies whether to stop the identification of the specified slot. If you set this switch to `TRUE`, the command stops identification of the specified slot. Typically, you use this switch to stop the identification of a slot that you previously identified with the `enclosure identify slot` command.

This switch defaults to `FALSE`.

**Examples**

The following example shows how to identify slot 1 in enclosure management device 0 using the `enclosure identify slot` command:

```
AAC0>enclosure identify slot 0 1
Executing: enclosure identify slot 0 1
```
Related Information

enclosure commands:
  ■ enclosure activate slot (page 11-3)
  ■ enclosure list (page 11-7)
  ■ enclosure prepare slot (page 11-12)
  ■ enclosure show slot (page 11-33)
enclosure Commands

**enclosure list**

To display the list of components associated with one or all SAF-TE enclosure management devices connected to the controller, use the `enclosure list` command.

**Syntax**

enclosure list [/all{=boolean}] [/full{=boolean}] [{enclosure}]

**Parameters**

{enclosure}

Specifies the ID associated with the enclosure management device whose associated components you want to display. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

**Switches**

/all{=boolean}

Specifies whether to display the components for all currently connected enclosure devices. If you set this switch to TRUE, the command displays a list of all enclosure devices connected to the controller and their associated components.

This switch defaults to FALSE if you specify a unit number; otherwise, the switch defaults to TRUE.

/full{=boolean}

Specifies whether to display detailed component information. If you specify TRUE, the command displays detailed component information. If you specify FALSE, the command displays non-detailed component information.

This switch defaults to FALSE.
Examples

The following example shows a non-detailed list of components for enclosure management devices 0 and 1:

AAC0>enclosure list /all=TRUE

Executing: enclosure list /all=TRUE

Enclosure Fan Power Slot Sensor Door ScsiId Speaker Standard Diagnostic
--------- --- ----- ---- ------ ---- ------ -------- -------- ----------
0 1 1 5 1 5 0:06:0 No SAF-TE PASSED
1 1 1 5 1 5 1:06:0 No SAF-TE PASSED

The non-detailed enclosure list display contains the following columns of information:

- Enclosure
- Fan
- Power
- Slot
- Sensor
- Door
- ScsiId
- Speaker
- Standard
- Diagnostic

The detailed enclosure list display contains the previous columns of information plus the following columns:

- EnclosureId
- VendorId
- ProductId
- Firmware

The following sections provide brief descriptions of each enclosure list column.
enclosure Commands

The Enclosure Column

The Enclosure column displays the ID of a specific enclosure management device. This is the ID that you specify for the enclosure parameter on the command line. In the example, the enclosure list command displays enclosure management device IDs 0 and 1 (because the /all switch was specified).

The Fan and Power Columns

The Fan column displays the number of fans on the enclosure management device. Typically, enclosure management devices support a maximum of sixteen fans. In the example, enclosure management devices 0 and 1 each have one fan.

The Power column displays the number of power supplies on the enclosure management device. Typically, enclosure management devices support a maximum of sixteen power supplies. In the example, enclosure management devices 0 and 1 each have one power supply.

Note: The “hot swapping” of enclosures is not supported. If you perform a hot swap, the Fan and Power columns may display incorrect information. Either perform a controller pause io before the hot swap, or a controller rescan after the hot swap to display the correct information.

The Slot and Sensor Columns

The Slot column displays the number of device slots on the enclosure management device. Typically, enclosure management devices support a maximum of sixteen device slots. In the example, enclosure management devices 0 and 1 each have five device slots.

The Sensor column displays the number of temperature sensors on the enclosure management device. Typically, enclosure management devices support a maximum of sixteen temperature sensors. In the example, enclosure management devices 0 and 1 each have one temperature sensor.
The Door Column
The Door column displays the number of doors on the enclosure management device. Typically, enclosure management devices support a maximum of sixteen doors. In the example, enclosure management devices 0 and 1 each have five doors.

The ScsiId Column
The ScsiId column displays the SCSI channel number (in the example, 0 and 1), the SCSI ID (in the example, 06), and the SCSI logical unit number (in the example, 0) for the enclosure management device.

The Speaker Column
The Speaker column displays whether there is a speaker installed on the enclosure management device. Specifically, the column can display the items listed in Table 11-1.

Table 11-1. Speaker Status

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Speaker is installed.</td>
</tr>
<tr>
<td>No</td>
<td>Speaker is not installed. This is the status displayed in the example.</td>
</tr>
</tbody>
</table>

The Standard Column
The Standard column displays a value that indicates whether the enclosure management device is compliant with the SAF-TE Interface Specification. This column should display the value SAF-TE, as in the example.

The Diagnostic Column
The Diagnostic column displays the status of the enclosure management device’s boot-time diagnostic tests. Typically at boot time, an enclosure management device performs diagnostic self-tests on itself.
Specifically, the column can display the items listed in Table 11-2.

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASSED</td>
<td>No errors were detected and the diagnostic self-tests were successful. This is the value displayed in the example for both enclosure management devices.</td>
</tr>
<tr>
<td>FAILED</td>
<td>Errors were detected and the diagnostic self-tests were not successful.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>The status of the diagnostic self-tests is unknown.</td>
</tr>
</tbody>
</table>

The EnclosureId, VendorId, and ProductId Columns

The EnclosureId column displays an identification number that is unique for each enclosure management device product sold by a particular manufacturer.

The VendorId column displays a string that identifies the manufacturer of the enclosure management device. In the example, the string that identifies the manufacturer of enclosure management devices 0 and 1 is ESG-SHV.

The ProductId column displays a string that identifies the enclosure management device’s product ID. In the example, the product ID for enclosure management devices 0 and 1 is SCA HSBP M2.

The Firmware Column

The Firmware column displays the current firmware revision of the enclosure management device. In the example, the firmware revision for enclosure management devices 0 and 1 is 0.14.

Related Information

closure commands:

- enclosure show fan (page 11-27)
- enclosure show power (page 11-30)
- enclosure show slot (page 11-33)
- enclosure show status (page 11-37)
- enclosure show temperature (page 11-41)
enclosure prepare slot

To indicate to the SAF-TE enclosure management device that it should take the appropriate action to prepare the device in a specific slot for removal or insertion, use the `enclosure prepare slot` command.

This command may perform such operations as shutting off power to the device slot. This allows users to safely remove a disk device from or insert a disk device into the device slot.

**Syntax**

```
enclosure prepare slot {enclosure} {slot}
```

**Parameters**

`{enclosure}`

Specifies the ID associated with the enclosure management device on which you want to prepare a slot. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

`{slot}`

Specifies the unit number associated with the slot. This is the slot that contains the device you want to prepare to make available. This unit number can range from 0 to 15 inclusive.

**Examples**

Before preparing a device in the slot, you might want to use the `enclosure show slot` command to determine the current device slot status:

```
AAC0>enclosure show slot

Executing: enclosure show slot

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>Slot</th>
<th>scsiId</th>
<th>Insert</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0:00:0</td>
<td>4</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0:01:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0:10:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0:03:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0:04:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1:00:0</td>
<td>0</td>
<td>OK CONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1:01:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1:10:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1:03:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1:04:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
</tbody>
</table>
```
The following example prepares the device in slot 0 on enclosure management device 0 for insertion or removal as a result of using the enclosure prepare slot command:

AAC0>enclosure prepare slot 0 0
Executing: enclosure prepare slot 0 0

You may want to use the enclosure show slot command again to see the change in the device slot’s status, as in the following example:

AAC0>enclosure show slot
Executing: enclosure show slot

<table>
<thead>
<tr>
<th>Enclosure Slot</th>
<th>scsiId</th>
<th>Insert</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0:00:0</td>
<td>0</td>
<td>OK UNCONFIG I/R READY NOTACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>0:01:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>0:10:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>0:03:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>0</td>
<td>0:04:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>1:00:0</td>
<td>0</td>
<td>OK CONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>1:01:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>1:03:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
<tr>
<td>1</td>
<td>1:04:0</td>
<td>0</td>
<td>OK UNCONFIG ACTIVATE</td>
</tr>
</tbody>
</table>

Note that the Status column now displays I/R READY and NOTACTIVATE, which means the device slot is off and ready for the insertion or removal of a device.

**Related Information**

**enclosure commands:**

- enclosure activate slot (page 11-3)
- enclosure identify slot (page 11-5)
- enclosure list (page 11-7)
- enclosure show slot (page 11-33)
**enclosure set alarm**

To turn the audible alarm on a specific SAF-TE enclosure management device on or off, use the `enclosure set alarm` command.

**Syntax**

```
enclosure set alarm [/on={boolean}] {enclosure}
```

**Parameters**

{enclosure}

Specifies the ID associated with the enclosure management device whose audible alarm you want to set. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

**Switches**

/on={boolean}

Specifies whether to turn the enclosure management device’s audible alarm on or off. If you set this switch to TRUE, the command turns on the audible alarm. If you set this switch to FALSE, the command turns off the audible alarm.

The default is FALSE.

**Examples**

The following example turns on the audible alarm on enclosure management device 0:

```
AAC0>enclosure set alarm /on=TRUE 0
Executing: enclosure set alarm /on=TRUE 0
```

**Related Information**

**enclosure commands:**

- `enclosure list` (page 11-7)
**enclosure set door**

To lock or unlock a specific door on a specific SAF-TE enclosure management device, use the `enclosure set door` command.

**Syntax**

```
enclosure set door [/lock{=boolean}] {enclosure} {door}
```

**Parameters**

- `{enclosure}`
  
  Specifies the ID associated with the enclosure management device on which you want to lock the door. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

- `{door}`
  
  Specifies the unit number of the door for which you want to set the lock. This number can range from 0 to 15 inclusive.

**Switches**

- `/lock{=boolean}`
  
  Specifies whether to lock the door associated with the specified unit number. If you set this switch to TRUE, the command locks the door associated with the specified unit number. If you set this switch to FALSE, the command unlocks the door associated with the specified unit number.

  This switch defaults to FALSE.

**Examples**

The following example locks the door associated with unit 1 on enclosure management device 0:

```
AAC0>enclosure set door /lock=TRUE 0 1
Executing: enclosure set door /lock=TRUE 0 1
```

**Related Information**

enclosure commands:

- enclosure list (page 11-7)
**enclosure set fan**

To set the speed of a specific fan on a specific SAF-TE enclosure management device, use the `enclosure set fan` command.

**Syntax**

```
enclosure set fan [/off={boolean}] {enclosure} {fan} [{speed}]
```

**Parameters**

- `{enclosure}`
  
  Specifies the ID associated with the enclosure management device on which you want to set the speed of a specific fan. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

- `{fan}`
  
  Specifies the unit number associated with the fan whose speed you want to set. The unit number for the fan ranges from 0 to 15 inclusive.

- `{speed}`
  
  Specifies the speed at which you want to set this fan. Table 11-3 lists the fan speed values you can specify.

  Table 11-3. Fan Speed Values

<table>
<thead>
<tr>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Turns off the fan</td>
</tr>
<tr>
<td>1</td>
<td>Runs the fan at 1/4 the full speed.</td>
</tr>
<tr>
<td>2</td>
<td>Runs the fan at 1/2 the full speed.</td>
</tr>
<tr>
<td>3</td>
<td>Runs the fan at 3/4 the full speed.</td>
</tr>
<tr>
<td>4</td>
<td>Runs the fan at full speed.</td>
</tr>
</tbody>
</table>

The fan speed defaults to full speed.
Switches

/\off\left\{=\text{boolean}\right\}

Specifies whether to turn off the fan associated with the specified unit number. If you set this switch to TRUE, the command turns off the fan associated with the specified unit number. You must turn on the fan if you want to set its speed.

This switch defaults to FALSE, which means the fan remains on and you can set its speed.

Examples

The following example sets fan unit 0 on enclosure management device 0 to full speed:

AAC0>enclosure set fan 0 0 4
Executing: enclosure set fan 0 0 4

Related Information

enclosure commands:

- enclosure list (page 11-7)
- enclosure set alarm (page 11-14)
- enclosure set power (page 11-20)
**enclosure set interval**

To set the monitor reporting interval for a specific SAF-TE enclosure management device, use the `enclosure set interval` command. The monitor reporting interval indicates how often the controller checks the status of the enclosure management device and its associated components. In setting this value, consider the needs of your computing environment. Setting the monitor reporting level to less than ten seconds could cause slower system performance.

**Syntax**

`enclosure set interval {second}`

**Parameters**

{second}

Specifies the number of seconds for the monitor reporting interval. You can specify 1 to n seconds where n represents the number of seconds for the monitor reporting interval. (The maximum value is 86,400, the number of seconds in a day.)

The default is 10 seconds.

**Examples**

Before setting the monitor reporting interval, you might want to use the `enclosure show status` command to determine the current monitor reporting interval setting.

As the following example shows, the current monitor reporting interval setting is 10:

```
AAC0>enclosure show status
Enclosure UpTime D:H:M PowerCycle Interval Door Alarm
--------- -------------- ---------- -------- -------- -------
 0 0:00:00 0 10 UNLOCKED OFF
```

```
Enclosure UpTime D:H:M PowerCycle Interval Door Alarm
--------- -------------- ---------- -------- -------- -------
 1 0:00:00 0 10 UNLOCKED OFF
```
enclosure Commands

The following example sets the monitor reporting interval for enclosure management devices 0 and 1 to 20 seconds:

AAC0> enclosure set interval 20

Executing: enclosure set interval 20

You may want to use the enclosure show status command again to see the change in the power supply’s status, as in the following example:

<table>
<thead>
<tr>
<th>Enclosure Uptime D: H: M</th>
<th>PowerCycle Interval</th>
<th>Door</th>
<th>Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0:00:00</td>
<td>0</td>
<td>20</td>
</tr>
</tbody>
</table>

Related Information

enclosure commands:

- enclosure list (page 11-7)
- enclosure show status (page 11-37)
enclosure set power

To turn the power of a specific power supply on a specific SAF-TE enclosure management device on or off, use the enclosure set power command. Typically, most enclosure management devices turn on their associated power supplies by default after power up.

Syntax

enclosure set power [/off{=boolean}] {enclosure} {powersupply}

Parameters

{enclosure}
  Specifies the ID associated with the enclosure management device on which you want to turn the power of a specific power supply on or off. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

{powersupply}
  Specifies the unit number associated with the power supply whose power you want to turn on or off. The unit number for the power supply can range from 0 to 15 inclusive.

Switches

/off{=boolean}
  Specifies whether to turn the power supply associated with the specified unit number on or off. If you set this switch to TRUE, the command turns off the power supply associated with the specified unit number. If you specify FALSE, the command turns on the power supply associated with the specified unit number.

  This switch defaults to FALSE, which means the command turns on the power supply if you do not specify the switch.

Examples

Before turning a power supply on or off, you might want to use the enclosure show power command to determine the current setting for the power supply or supplies. As the following example
shows, power supply 0 on enclosure management device 1 is off and operational:

AAC0>enclosure show power
Executing: enclosure show power
Enclosure Power State Status
---------- ----- ------------ -------
0 0 ON OK
1 0 ON OK

The following example turns on power supply 0 on enclosure management device 1:

AAC0>enclosure set power 1 0
Executing: enclosure set power 1 0
You may want to use the enclosure show power command again to see the change in the power supply’s status, as in the following example:

AAC0>enclosure show power
Executing: enclosure show power
Enclosure Power State Status
---------- ----- ------------ -------
0 0 ON OK
1 0 ON OK

Related Information

enclosure commands:

■ enclosure list (page 11-7)
■ enclosure show power (page 11-30)
Adaptec SCSI RAID Software Reference Guide

enclosure set scsiid

To set the SCSI device ID for a specific device slot on a specific SAF-TE enclosure management device, use the `enclosure set scsiid` command. As discussed in other chapters, a SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, and so on), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). The `enclosure set scsiid` command allows you to set the specified device slot to a specific SCSI device ID (the middle number of a SCSI ID).

Notes

Before setting the SCSI device ID for a specific device slot on a specific SAF-TE enclosure management device, use the `controller pause io` command. This command pauses all I/O activity on the currently opened controller.

You cannot set the SCSI device ID for a specific device slot to a SCSI device ID that is already in use. The command checks for SCSI device ID conflicts and will display an appropriate error message if you try to assign a SCSI device ID that is already in use.

Syntax

```
enclosure set scsiid {enclosure} {slot} {device_id}
```

Parameters

{enclosure}

Specifies the ID associated with the enclosure management device. The device slot to be assigned a SCSI channel number is located on this enclosure management device. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

{slot}

Specifies the unit number associated with the device slot that you want to assign a SCSI channel number. This integer can range from 0 to 15 inclusive.
{device_id}

Specifies the ID (0 through 15 inclusive) of the SCSI device you want to assign to the specified device slot.

Examples

Before setting a device slot to a specific SCSI ID, you might want to use the `enclosure show slot` command to determine the current SCSI ID setting for the device slots, as in the following example:

```
AAC0>enclosure show slot
Executing: enclosure show slot
Enclosure Slot scsiId Insert Status
--------- ---- ------ ------- --
 0 0 0:00:0 4 OK NOTACTIVATE
 0 1 0:01:0 0 OK UNCONFIG ACTIVATE
 0 2 0:10:0 0 OK UNCONFIG ACTIVATE
 0 3 0:03:0 0 OK UNCONFIG ACTIVATE
 0 4 0:04:0 0 OK UNCONFIG ACTIVATE
 0 5 0:05:0 0 OK UNCONFIG ACTIVATE
 0 6 0:10:0 0 OK UNCONFIG ACTIVATE
 0 7 0:03:0 0 OK UNCONFIG ACTIVATE
 0 8 0:04:0 0 OK UNCONFIG ACTIVATE
 0 9 0:05:0 0 OK UNCONFIG ACTIVATE
 0 10 0:10:0 0 OK UNCONFIG ACTIVATE
 0 11 0:03:0 0 OK UNCONFIG ACTIVATE
 0 12 0:04:0 0 OK UNCONFIG ACTIVATE
 0 13 0:05:0 0 OK UNCONFIG ACTIVATE
 0 14 0:10:0 0 OK UNCONFIG ACTIVATE
 0 15 0:03:0 0 OK UNCONFIG ACTIVATE
```

The following example sets device slot 2 on enclosure management device 0 to SCSI device ID 05. The example also shows how to pause all I/O activity on the controller by using the `controller pause_io` command:

```
AAC0>controller pause_io 30
Executing: controller pause_io 30
AAC0>enclosure set scsiid 0 2 5
Executing: enclosure set scsiid 0 2 5
```

You may want to use the `enclosure show slot` command again to see the change in the SCSI ID setting, as in the following example:

```
AAC0>enclosure show slot
Executing: enclosure show slot
Enclosure Slot scsiId Insert Status
--------- ---- ------ ------- --
 0 0 0:00:0 4 OK NOTACTIVATE
 0 1 0:01:0 0 OK UNCONFIG ACTIVATE
 0 2 0:05:0 0 OK UNCONFIG ACTIVATE
 0 3 0:03:0 0 OK UNCONFIG ACTIVATE
 0 4 0:04:0 0 OK UNCONFIG ACTIVATE
 0 5 0:05:0 0 OK UNCONFIG ACTIVATE
 0 6 0:10:0 0 OK UNCONFIG ACTIVATE
 0 7 0:03:0 0 OK UNCONFIG ACTIVATE
 0 8 0:04:0 0 OK UNCONFIG ACTIVATE
 0 9 0:05:0 0 OK UNCONFIG ACTIVATE
 0 10 0:10:0 0 OK UNCONFIG ACTIVATE
 0 11 0:03:0 0 OK UNCONFIG ACTIVATE
 0 12 0:04:0 0 OK UNCONFIG ACTIVATE
 0 13 0:05:0 0 OK UNCONFIG ACTIVATE
```
Adaptec SCSI RAID Software Reference Guide

1       3   1:03:0     0   OK UNCONFIG ACTIVATE
1       4   1:04:0     0   OK UNCONFIG ACTIVATE

Related Information
controller commands:
  ■ controller pause_io (page 6-13)
enclosure commands:
  ■ enclosure list (page 11-7)
  ■ enclosure show slot (page 11-33)
enclosure set temperature

To set the temperature threshold on a specific SAF-TE enclosure management device, use the `enclosure set temperature` command. Typically, an enclosure management device contains individual temperature sensors.

With this command, you can set a temperature threshold so that the enclosure management device alerts you if one or more of the temperature sensors exceeds the threshold.

**Syntax**

```
enclosure set temperature {enclosure} {degree}
```

**Parameters**

* {enclosure} 
  Specifies the ID associated with the enclosure management device on which you want to set a temperature threshold. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

* {degree} 
  Specifies the temperature (in degrees Fahrenheit) at which you want to set the threshold for this enclosure management device. You can specify from 0 to 255 degrees Fahrenheit.
  
  The default is 120 degrees Fahrenheit.

**Examples**

Before setting the threshold temperature, you might want to use the `enclosure show temperature` command to determine the current temperature(s). As the following example shows, the current temperature is 70 degrees Fahrenheit and the threshold setting is 120 degrees Fahrenheit:

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>Sensor Temperature</th>
<th>Threshold</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>70 F</td>
<td>120</td>
<td>NORMAL</td>
</tr>
</tbody>
</table>

The following example sets the threshold temperature associated with enclosure management device 0 to 100 degrees Fahrenheit:
You may want to use the `enclosure show temperature` command again to see the change in threshold temperature, as in the following example:

```
AAC0> enclosure show temperature 0
Executing: enclosure show temperature 0
Enclosure Sensor Temperature Threshold Status
--------- ------ ----------- --------- --------
 0 0 70 F 100 NORMAL
```

The **Threshold** column now displays **100** degrees.

**Related Information**

**enclosure commands:**

- `enclosure list` ([page 11-7])
- `enclosure show temperature` ([page 11-41])
enclosure show fan

To display the status of a specific fan on a specific SAF-TE enclosure management device, use the `enclosure show fan` command. You can also use this command to display the status of all fans on the enclosure management device or devices.

**Syntax**

```
enclosure show fan [{enclosure}] [{fan}]
```

**Parameters**

{enclosure}

Specifies the ID associated with the enclosure management device for which you want to display fan status information. For this version, the controller supports a maximum of eight enclosure management devices on each bus. If you do not specify a unit number, the command displays the fan status for all enclosure management devices connected to the controller.

{fan}

Specifies the unit number associated with the fan whose status you want to display. This integer can range from 0 to 15 inclusive. If you do not specify a unit number, the command displays the status for all fans on the enclosure management device or devices.
## Examples

The following example displays the status of all fans on enclosure management devices 0 and 1:

AAC0>enclosure show fan

Executing: enclosure show fan
Enclosure Fan Status
--------- --- -------------
       0 0 OK
       1 0 NOT INSTALLED

As the example shows, the fan status display contains the following columns:

- Enclosure
- Fan
- Status

The following sections describe the information that the `enclosure show fan` command can display in these columns.

### The Enclosure and Fan Columns

The **Enclosure** column displays the ID associated with the enclosure management device that you specified on the command line. If you did not specify an ID, the `enclosure show fan` command displays the IDs for all enclosure management devices connected to the controller. In the example, the `enclosure show fan` command displays enclosure management device IDs 0 and 1.

The **Fan** column displays the unit number associated with the fan that you specified on the command line. If you did not specify a unit number, the `enclosure show fan` command displays the unit numbers for all fans on the enclosure management device or devices. In the example, there is one fan (unit 0) each on enclosure management devices 0 and 1.

### The Status Column

The **Status** column displays the status for each fan listed in the display. The `enclosure show fan` command can display the fan status values listed in Table 11-4.


table 11-4. Fan Status Values

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>The fan is operational. In the example, fan 0 on enclosure management device 0 is operational.</td>
</tr>
<tr>
<td>BAD</td>
<td>The fan is not working properly.</td>
</tr>
<tr>
<td>NOT INSTALLED</td>
<td>The fan is not installed. In the example, fan 0 on enclosure management device 1 is not installed.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>The status of the fan is not reportable. Or, the fan status is unknown.</td>
</tr>
</tbody>
</table>

Related Information

enclosure commands:
- enclosure list (page 11-7)
- enclosure set fan (page 11-16)
- enclosure show status (page 11-37)
enclosure show power

To display the status of a specific power supply on a specific SAF-TE enclosure management device, use the enclosure show power command. You can also use this command to display the status of all power supplies on the enclosure management device or devices.

Syntax
enclosure show power [{enclosure}] [{powersupply}]

Parameters
{enclosure}

Specifies the ID associated with the enclosure management device for which you want to display power supply status information. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

If you do not specify an ID, the command displays the power supply status for all enclosure management devices connected to the controller.

{powersupply}

Specifies the unit number associated with the power supply whose status you want to display. This integer can range from 0 to 15 inclusive.

If you do not specify a unit number, the command displays the status for all power supplies on the enclosure management device or devices.

Examples
The following example displays the status of the power supplies on enclosure management devices 0 and 1:

AAC0>enclosure show power
Executing: enclosure show power
Enclosure Power State Status
--------- ----------- -------
0 0 OK ON
1 0 OK OFF

11-30
As the example shows, the power supply status display contains the following columns:

- Enclosure
- Power
- State
- Status

The following sections describe the information that the `enclosure show power` command can display in these columns.

**The Enclosure and Power Columns**

The **Enclosure** column displays the ID associated with the enclosure management device that you specified on the command line. If you did not specify an ID, the `enclosure show power` command displays the IDs for all enclosure management devices connected to the controller. In the example, 0 is specified.

The **Power** column displays the unit number associated with the power supply that you specified on the command line. If you did not specify a unit number, `enclosure show power` command displays the unit numbers for all power supplies on the enclosure management device or devices. In the example, there is one power supply (unit 0) each on enclosure management devices 0 and 1.

**The State and Status Columns**

The **State** column displays the state and the **Status** column displays the status of the power supply. Specifically, the column can display the items listed in Table 11-5.

<table>
<thead>
<tr>
<th>Status</th>
<th>State</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>OK</td>
<td>The power supply is on and operational. In the example, power supply 0 on enclosure management device 0 has these values.</td>
</tr>
<tr>
<td>OFF</td>
<td>OK</td>
<td>The power supply is off and operational. In the example, power supply 0 on enclosure management device 1 has these values.</td>
</tr>
</tbody>
</table>
### Related Information

**enclosure commands:**

- enclosure list (page 11-7)
- enclosure set power (page 11-20)
enclosure show slot

To display the status of a specific device slot on a specific SAF-TE enclosure management device, use the `enclosure show slot` command. You can also use this command to display the status of all device slots on the enclosure management device or devices.

Syntax

```
enclosure show slot [{enclosure}] [{slot}]
```

Parameters

**{enclosure}**

Specifies the ID associated with the enclosure management device for which you want to display device slot status information. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

If you do not specify an ID, the command displays the device slot status for all enclosure management devices connected to the controller.

**{slot}**

Specifies the unit number associated with the device slot whose status you want to display. This integer can range from 0 to 15 inclusive. Typically, the slot unit number is limited by the physical number of device slots in the enclosure management device.

If you do not specify a unit number, the command displays the status for all device slots on the enclosure management device or devices.
Examples

The following example displays the status of all device slots on enclosure management devices 0 and 1:

AAC0>enclosure show slot

Executing: enclosure show slot

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>Slot</th>
<th>scsiId</th>
<th>Insert</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0:00:0</td>
<td>0</td>
<td>OK</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0:01:0</td>
<td>0</td>
<td>UNCONFIG</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
<td>0:10:0</td>
<td>0</td>
<td>UNCONFIG</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0:03:0</td>
<td>0</td>
<td>UNCONFIG</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
<td>0:04:0</td>
<td>0</td>
<td>UNCONFIG</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1:00:0</td>
<td>0</td>
<td>UNCONFIG</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1:01:0</td>
<td>0</td>
<td>UNCONFIG</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1:10:0</td>
<td>0</td>
<td>UNCONFIG</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1:03:0</td>
<td>0</td>
<td>UNCONFIG</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>1:04:0</td>
<td>0</td>
<td>UNCONFIG</td>
</tr>
</tbody>
</table>

As the example shows, the device slot status display contains the following columns:

- Enclosure
- Slot
- scsiId
- Insert
- Status

The following sections describe the information that the `enclosure show slot` command can display in these columns.

The Enclosure and Slot Columns

The Enclosure column displays the ID associated with the enclosure management device that you specified on the command line. If you did not specify an ID, the `enclosure show slot` command displays the IDs for all enclosure management devices connected to the controller. In the example, the `enclosure show slot` command displays enclosure management device IDs 0 and 1.

The Slot column displays the unit number associated with the device slot that you specified on the command line. If you did not specify a unit number, the `enclosure show slot` command displays the unit numbers for all device slots on the enclosure management device or devices. In the example, the `enclosure
show slot command displays the device slot status for device slots 0 through 4 for enclosure management devices 0 and 1.

**The scsild Column**

The `scsild` column displays the SCSI ID associated with the device slot. A SCSI ID consists of a SCSI channel number (for example, 0, 1, 2, 3, etc.), SCSI device ID (0 through 15 inclusive), and SCSI device logical unit number (0 through 7 inclusive). In the example, the `enclosure show slot` command displays the SCSI IDs for device slots 0 through 4.

**The Insert Column**

The `Insert` column displays a number that indicates how many times a user inserted a device into the device slot. In the example, a user inserted a device into device slot 0 four times.

**The Status Column**

The `Status` column displays status information about a device slot. Specifically, the column can display the values listed in Table 11-6.

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>OK</td>
<td>The device that resides in this slot is operational. In the example, the device that resides in device slot 0 on enclosure management device 0 is operational.</td>
</tr>
<tr>
<td>ERROR</td>
<td>The device that resides in this slot has error conditions.</td>
</tr>
<tr>
<td>FAULTY</td>
<td>The device that resides in this slot has some hardware or data fault.</td>
</tr>
<tr>
<td>FAILOVER</td>
<td>The device that resides in this slot is in a rebuild.</td>
</tr>
<tr>
<td>FAILED</td>
<td>The device that resides in this slot is in a device array. One member of this device array has an error.</td>
</tr>
<tr>
<td>CRITICAL</td>
<td>The device that resides in this slot is in a device array that was previously fault-tolerant and is now non-fault-tolerant.</td>
</tr>
<tr>
<td>SCRUB</td>
<td>The device that resides in this slot is in a device array that is undergoing a parity check operation.</td>
</tr>
</tbody>
</table>
Related Information

enclosure commands:

- enclosure list (page 11-7)
- enclosure set scsiid (page 11-22)
**enclosure show status**

To display the general status of a specific SAF-TE enclosure management device, use the `enclosure show status` command. You can also use this command to display the general status of all enclosure management devices connected to the controller.

In addition to general status information, this command also displays status information available from the following commands:

- `enclosure show fan`
- `enclosure show power`
- `enclosure show slot`
- `enclosure show temperature`

**Syntax**

`enclosure show status [{enclosure}]`

**Parameters**

`{enclosure}`

Specifies the ID associated with the enclosure management device for which you want to display status information. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

If you do not specify an ID, the command displays status information for all enclosure management devices connected to the controller.

**Examples**

The following example displays status information for enclosure management devices 0 and 1:

AAC0>enclosure show status

Executing: enclosure show status

<table>
<thead>
<tr>
<th>Enclosure</th>
<th>UpTime D:H:M</th>
<th>PowerCycle Interval</th>
<th>Door</th>
<th>Alarm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0:04:25</td>
<td>2</td>
<td>20</td>
<td>UNLOCKED</td>
</tr>
</tbody>
</table>

11-37
The general status of an enclosure management device is encapsulated in the following columns:

- Enclosure
- UpTime D:H:M
- PowerCycle
enclosure Commands

- Interval
- Door
- Alarm

The following sections describe the information that the `enclosure show status` command can display in these columns. For information about the status displays for fans, power supplies, device slots, and temperature sensors see the Related Information section.

**The Enclosure Column**

The **Enclosure** column displays the ID associated with the enclosure management device that you specified on the command line. If you did not specify an ID, the `enclosure show status` command displays the IDs for all enclosure management devices connected to the controller.

**The UpTime D:H:M Column**

The **UpTime D:H:M** column displays the total time (days:hours:minutes) that the enclosure management device has been running. This count is cumulative over the life of the enclosure management device.

**The PowerCycle Column**

The **PowerCycle** column displays the number of times a user has powered on the enclosure management device. In the example, a user powered on enclosure management device 0 two times and enclosure management device 1 three times. This count is cumulative over the life of the enclosure management device.

**The Interval Column**

The **Interval** column displays the monitor interval. You can set the monitor interval with the `enclosure set interval` command. In the example, the monitor interval reporting level for both enclosure management devices is 20 seconds.
The Door and Alarm Columns

The **Door** column displays the status of the door lock. The `enclosure show status` command can display the door lock status values listed in Table 11-7.

Table 11-7. Door Lock Status Values

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOCKED</td>
<td>The door is currently locked.</td>
</tr>
<tr>
<td>UNLOCKED</td>
<td>The door is currently unlocked or there is no controllable door lock installed. This is the value displayed in the example.</td>
</tr>
<tr>
<td>UNKNOWN</td>
<td>The status of the door lock is not reportable. Or, the door lock status is unknown.</td>
</tr>
</tbody>
</table>

The **Alarm** column displays the status of the audible alarm. The `enclosure show status` command can display the audible alarm status values listed in Table 11-8.

Table 11-8. Audible Alarm Status Values

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>The alarm is currently on.</td>
</tr>
<tr>
<td>OFF</td>
<td>The alarm is currently off or there is no alarm installed. This is the value displayed in the example.</td>
</tr>
</tbody>
</table>

**Related Information**

- `enclosure list` ([page 11-7](#))
- `enclosure set interval` ([page 11-18](#))
- `enclosure show fan` ([page 11-27](#))
- `enclosure show power` ([page 11-30](#))
- `enclosure show slot` ([page 11-33](#))
- `enclosure show temperature` ([page 11-41](#))
enclosure show temperature

To display the temperature status of a specific temperature sensor on a specific SAF-TE enclosure management device, use the enclosure show temperature command. You can also use this command to display the temperature status of all temperature sensors on the enclosure management device or devices.

Syntax

enclosure show temperature [{enclosure}][{sensor}]

Parameters

{enclosure}

Specifies the ID associated with the enclosure management device for which you want to display temperature status information. For this version, the controller supports a maximum of eight enclosure management devices on each bus.

If you do not specify an ID, the command displays the temperature status information for all enclosure management devices connected to the controller.

{sensor}

Specifies the unit number associated with the temperature sensor whose status you want to display. This integer can range from 0 to 15 inclusive.

If you do not specify a unit number, the command displays the status for all temperature sensors on the enclosure management device or devices.

Examples

The following example displays the temperature status of temperature sensor unit 0 on enclosure management device 0:

AAC0>enclosure show temperature 0 0
Executing: enclosure show temperature 0 0
Enclosure Sensor Temperature Threshold Status
--------- ------ ----------- --------- --------
0        0        70          120 NORMAL
As the example shows, the temperature sensor status display contains the following columns:

- Enclosure
- Sensor
- Temperature
- Threshold
- Status

The following sections describe the information that the `enclosure show temperature` command can display in these columns.

**The Enclosure Column**

The Enclosure column displays the ID associated with the enclosure management device that you specified on the command line. If you did not specify an ID, the `enclosure show temperature` command displays the IDs for all enclosure management devices connected to the controller. In the example, 0 is specified.

**The Sensor Column**

The Sensor column displays the unit number associated with the temperature sensor that you specified on the command line. If you did not specify a unit number, the `enclosure show temperature` command displays the unit numbers for all temperature sensors on the enclosure management device or devices.

**The Temperature Column**

The Temperature column displays the internal enclosure temperature for this temperature sensor, in degrees Fahrenheit. The temperature can range from -10 degrees to 245 degrees Fahrenheit. In the example, the temperature is 70 degrees Fahrenheit.

**The Threshold Column**

The Threshold column displays the temperature at which an alarm will be sounded if the temperature goes above the threshold. In the example, the temperature threshold is 120 degrees Fahrenheit. You can change the temperature threshold by using the `enclosure set temperature` command.
enclosure Commands

The Status Column

The **Status** column displays the status of the temperature displayed in the **Temperature** column. The `enclosure show temperature` command can display the temperature status values listed in Table 11-9.

<table>
<thead>
<tr>
<th>Status</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>NORMAL</td>
<td>The temperature is within the normal range for this temperature sensor. In this case, the enclosure management device does not send an alarm. This is the value that appears in the example.</td>
</tr>
<tr>
<td>ABNORMAL</td>
<td>The temperature exceeds the normal range for this temperature sensor. In this case, the enclosure management device may send an alarm.</td>
</tr>
</tbody>
</table>

Table 11-9. Temperature Status Values

Related Information

closure commands:

- enclosure list (page 11-7)
- enclosure set temperature (page 11-25)
- enclosure show status (page 11-37)
Using the Adaptec Flash Utility

In this Chapter

Introduction 12-1
Overview of the AFU 12-2
System Requirements 12-3
Firmware Floppy Kit 12-4
Running the AFU 12-5
Accessing the AFU from the GUI 12-5
Accessing the AFU from the Command Line 12-5
Flashing the Firmware Using AFU 12-7
AFU Commands 12-8
AFU Error Handling 12-13

Introduction

The Adaptec® Flash Utility (AFU) is a DOS application used to update the flash EEPROM components on one or more Adaptec SCSI RAID controllers. The utility can also be used to verify a controller’s current flash contents against the flash images in a specified file or to save a controller’s current flash contents to a file.
Your Adaptec RAID controller uses nonvolatile flash to store onboard software, such as BIOS, microprocessor kernel, and monitor. Whenever it becomes necessary to update any of those components you can update your controller’s flash components using the AFU.

AFU updates the controller’s flash by reading flash image data from a supplied user flash image (UFI) file and writing it to the controller’s flash components. A UFI file contains all of a controller’s flash images, as well as information about each image. It also includes general controller information, such as controller type, to ensure that AFU uses the correct UFI file when updating the controller’s flash.

The process of updating a controller’s flash must be done carefully to avoid rendering the controller inoperable. AFU is designed to be easy to use with all the necessary safeguards to prevent a user from accidentally damaging the controller’s flash contents.

**Overview of the AFU**

The AFU performs the following primary functions:

- **Update**—Updates all the flash components on a controller with the flash image data from a UFI file.

- **Save**—Reads the contents of a controller’s flash components and saves the data to a UFI file. This enables you to later restore a controller’s flash to its previous contents should the need arise.

- **Verify**—Reads the contents of a controller’s flash components and compares it to the contents of the specified flash image file.

- **Version**—Displays version information about a controller’s flash components.

- **List**—Lists all the supported controllers detected in your system.

- **Reset**—Resets one or more controllers in your system.

See *Running the AFU* on page 12-5, for detailed information on these commands.
System Requirements

The requirements for AFU are as follows:

- AFU runs under MS–DOS V5.0 or later. It cannot run from a DOS command prompt window under any version of Windows.
  
  You must shut down your operating system and reboot under DOS to use the AFU. To start MS–DOS, boot from a bootable MS–DOS floppy diskette or from a DOS partition on a bootable hard disk drive.

- AFU requires a minimum of 8 MB of extended memory.

- AFU will not run with any DOS extenders installed in memory, such as EMM386.SYS and DOS4GW.
  
  AFU does support HIMEM.SYS and is compatible with other DOS drivers running under HIMEM.SYS (for example, SMARTDRV.SYS and SETVER.SYS).

- It is possible to run AFU from a partition on a drive or array attached to the controller you are updating. Once the flash update begins no I/O will be possible to any array attached to that controller until the flash operation is completed and your system has been rebooted.

- If you want to update multiple controllers in the same system, it is recommended that you first update the “boot” controller’s flash, reboot the system, and then update any remaining controllers’ flash components.
Firmware Floppy Kit

Controller firmware is delivered on CD–ROM, or updates may be downloaded from the Adaptec website www.adaptec.com.

The CD includes the AFU executable AFU. exe, the corresponding documentation, and a separate flash image. The flash image may be comprised of multiple user flash image (UFI) files.

If there are multiple UFI files the first file will be small enough to fit on a diskette with AFU. Subsequent files will each just fit on a blank 1.44M diskette.

To create a controller firmware kit on floppy diskettes:

1. Locate the necessary files on the CD–ROM at:

   packages/firmware/adpxxxxS

   where xxxx is the model number of your controller.
Using the Adaptec Flash Utility

2 Create a bootable MS–DOS floppy diskette and copy the following files to this diskette:
   - AFU.exe
   - AC2xx001.ufi
   where 2xx0 is the model number of your controller.

3 Copy the remaining UFI files to additional diskettes.

Running the AFU
You can run the AFU from its graphical user interface (GUI) or from the command line.

Accessing the AFU from the GUI
To access the AFU GUI:

1 At the DOS command prompt (typically A: \>), type AFU with no arguments.
   The main menu to the AFU GUI, which is self-explanatory, is displayed.

2 Select Select Controllers and select the controller(s) to be flashed.

3 Select Select an Operation.

4 Select any available AFU function and follow the on-screen instructions.

Accessing the AFU from the Command Line
At the DOS command prompt (typically A: \>), enter the command AFU followed by a command keyword and any optional switches.
The AFU processes your command with no further interaction\(^1\) and then exits with the status “success” or a specific error message code.

The syntax of the AFU command line is as follows:
AFU <Command> [/C <Controller ID>] [/D <UFI File Path>] [/?] 

In this command line:

\(^1\) The AFU will prompt you to insert additional floppy diskettes as required.
Adaptec SCSI RAID Software Reference Guide

- `<Command>` is a keyword specifying the AFU function to be performed. The `<Command>` keyword must immediately follow the AFU command. The valid command keywords are as follows:
  - HELP—Displays AFU help text
  - LIST—Lists the AFU-supported controllers installed on this system
  - RESET—Resets and restarts the controller
  - SAVE—Saves the contents of a controller’s flash to the specified UFI file
  - UPDATE—Updates a controller’s flash from the data in the specified UFI file
  - VERIFY—Compare the controller’s current flash to the specified UFI file
  - VERSION—Displays the controller’s current flash version information

- `/C <Controller ID>` is one or more controller IDs representing the set of controllers on which to perform the specified command. You can specify a single controller ID (for example, `/C 0`), multiple IDs separated by commas (for example, `/C 0,2`), or the keyword ALL to indicate all controllers.

  This switch is required. If no /C switch is specified, the system returns a fatal error message. See each individual command for the default switch values.

- `/D <UFI File Path>` specifies the path (drive and directory) where the UFI files are located. If you do not specify the /D switch, the AFU looks for or creates its UFI files in the current default drive and directory.

  Note that you cannot specify the name of a UFI file, only its path. UFI file names are predefined, based on the controller type.
Flashing the Firmware Using AFU

The simplest way to flash the controller is to use the AFU GUI. Follow the instructions in Accessing the AFU from the GUI on page 12-5 to start AFU with the GUI.

To flash the firmware using the AFU utility from the command line:

1. Shut down your system.
2. Insert the bootable diskette that contains the AFU utility.
3. Power on the system.
   If the system has not been set up to boot from the diskette, please read your manufacturer’s instructions on how to set this up.
4. At the DOS prompt, type the following command and press Enter:
   ```
 afu list
   ```
   This command displays a list of the controllers in your system. Take note of the controller(s) you would like to update and its number (or numbers if there are more than one). Verify that the controller you wish to update is identified.
5. This step is comprised of three alternative substeps. If you want to flash the firmware on one controller, go to step a. If you want to flash the firmware on more than one controller, go to step b. If you want to flash the firmware on all controllers, go to step c.

   a. Flashing the Firmware on a Single Controller
      To flash the firmware on a single controller, type the following at the DOS prompt, replacing `<CONTROLLER_NUMBER>` with the number of the controller whose firmware you are flashing.
      ```
 afu update /C <CONTROLLER_NUMBER>
      ```
      To upgrade controller 0, for example, you would type the following:
      ```
 afu update /C 0
      ```
b Flashing the Firmware on Multiple Controllers

To flash the firmware on multiple controllers, type the following at the DOS prompt, replacing the comma-separated list of CONTROLLER_NUMBER_n with the numbers of the controllers whose firmware you are updating:

afu update /C
CONTROLLER_NUMBER_1, CONTROLLER_NUMBER_2

To upgrade controllers 0, 2, and 3 for example, you would type the following:

afu update /C 0, 2, 3

C Flashing the Firmware on All Controllers

To flash the firmware on all controllers, type the following at the DOS prompt:

afu update /C all

6 The firmware image may be contained on multiple diskettes.

The AFU prompts you to put in the first firmware diskette. When it detects that the diskette is in the drive, the AFU will read the part of the firmware image contained on the first diskette.

7 The AFU then tells you to remove the first firmware diskette and insert the second firmware diskette.

8 If there are additional UFI files this process is repeated until the complete image has been read, then the controller flash will be updated with the new image.

AFU Commands

The following pages describe each of the AFU commands in detail. For ease of use, the commands are presented in alphabetical order.
Using the Adaptec Flash Utility

HELP

The HELP command displays a summary of AFU functions and command switches.

Note that you can also issue the following command to display the help text for the AFU:

```
AFU /?
```

Options

None

Default Switch Values

None

Examples

```
A:\> AFU HELP
```

```
A:\> AFU /?
```

LIST

The LIST command displays the AFU-supported controllers installed on your system. Use this command to see which controllers are installed on this system, or to identify the ID numbers assigned to each physical controller.

Note that, unlike most other AFU commands, the LIST command does not shut down the controller’s kernel or otherwise interrupt the controller’s normal operation. You do not have to reset the controller upon completion of this command.

Options

None

Default Switch Values

None

Example

```
A:\> AFU LIST
```

Adaptec Flash Utility V4.0-0 B5749
(c)Adaptec Inc. 1999–2002. All Rights Reserved.

Controllers Detected and Recognized:
RESET

The RESET command resets a controller to its initial start-up state and waits for the controller’s on-board kernel to restart. If the controller’s flash components were updated, the new firmware is executed.

Use the /C switch to reset a specific controller or multiple controllers.

You must reset your system or issue a RESET command following an UPDATE or a SAVE command because these commands effectively shut down the controller’s kernel.

Default Switch Values

If you do not include the /C switch, the AFU returns a fatal error message.

Examples

A:\> AFU RESET /C 0
    Resets controller 0.

A:\> AFU RESET /C ALL
    Resets all supported controllers.

SAVE

The SAVE command saves the contents of a controller’s flash in a UFI file. The name of the UFI file is based on the controller type and cannot be changed. Use the /D switch to specify the drive and directory where you want AFU to create the UFI file.

Note that you cannot specify more than one controller with the SAVE command. If you include the /C switch and specify more than one controller ID, the AFU displays an error message and exits.

You must reset your system or issue a RESET command following a SAVE command because this command effectively shuts down the controller’s kernel.
Using the Adaptec Flash Utility

Default Switch Values

If you do not include the /C switch, the AFU returns a fatal error message.

If you do not include the /D switch, the AFU creates the UFI file in the current default drive and directory.

Examples

A:\> AFU SAVE /C 0

The AFU saves flash contents from controller 0 to a UFI file in the current default drive and directory.

A:\> AFU SAVE /C 1 /D C:\UFI_FILES

The AFU saves flash contents from controller 1 to a UFI file in the directory C:\UFI_FILES.

UPDATE

The UPDATE command updates a controller’s flash components from the flash image data in a UFI file. You can use the UPDATE command to update a single controller’s flash components or to update multiple controllers on your system.

You must reset your system or issue a RESET command following an UPDATE command because this command effectively shuts down the controller’s kernel.

Default Switch Values

If you do not include the /C switch, the AFU returns a fatal error message.

If you do not include the /D switch, the AFU looks for its UFI files in the current default drive and directory.

Example

A:\> AFU UPDATE /C 0

Adaptec Flash Utility V4.0-0 B5749
(c)Adaptec Inc. 1999–2002. All Rights Reserved.
Updating Controller 0 (Adaptec 2200S)
Reading flash image file (Build 5749)
AFU is about to update firmware on controller(s) Adaptec 2200S
***PLEASE DO NOT REBOOT THE SYSTEM DURING THE UPDATE***
**VERIFY**

The **VERIFY** command compares the contents of each of the flash components on a controller to the corresponding image in a UFI file and indicates whether they match. Use this command to determine whether a controller’s flash components are up-to-date when compared to a specific UFI file.

Because the **VERIFY** command interrupts the controller’s normal operation, you must reset the controller upon completion of this command.

**Default Switch Values**

If you do not include the /C switch, the AFU returns a fatal error message.

If you do not include the /D switch, the AFU verifies against UFI files in the current default drive and directory.

**Example**

A:\> **AFU VERIFY /C 0**

Adaptec Flash Utility V4.0-0 B5749  
(c)Adaptec Inc. 1999–2002. All Rights Reserved.

Reading flash image file (Build 5748)

Controller #0: Adaptec 2200S

<table>
<thead>
<tr>
<th>ROM:</th>
<th>Checksum: 797B [VALID] (Build 5748)</th>
</tr>
</thead>
<tbody>
<tr>
<td>File:</td>
<td>Checksum: 797B [VALID] (Build 5748)</td>
</tr>
</tbody>
</table>

Image Compares Correctly

**VERSION**

The **VERSION** command displays version information about the flash components on a controller.
Using the Adaptec Flash Utility

Use the /C switch to get version information about a specific controller or multiple controllers.

Because the VERSION command interrupts the controller’s normal operation, you must reset the controller upon completion of this command.

Default Switch Values

If you do not include the /C switch, the AFU returns a fatal error message.

Examples

A:\> AFU VERSION /C 0
Adaptec Flash Utility V4.0-0 B5749
(c)Adaptec Inc. 1999–2002. All Rights Reserved.
Version Information for Controller #0 (Adaptec 2200S)
A:\> AFU VERSION /C ALL
Displays version information about all the supported controllers

AFU Error Handling

Because the AFU is a DOS utility designed to run without user interaction, it handles errors by exiting immediately whenever an error is detected. For example, if AFU is unable to locate UFI files, it displays an error message and exits. On exit, the AFU returns its exit status—zero for success or a non-zero code for an error—in the DOS environment variable ERRORLEVEL. If you run the AFU from within a DOS batch file, the batch file can examine the AFU’s exit status using the DOS command IF ERRORLEVEL 1 to take action if the AFU exited with an error.
Using the Array Configuration Utility

In this Chapter

*Introducing the Array Configuration Utility for MS-DOS* 13-1
*Running the ACU* 13-2
*Using Interactive Mode* 13-3
*Using Script Mode* 13-8

**Introducing the Array Configuration Utility for MS-DOS**

Adaptec RAID Configuration (ARC) is an embedded BIOS utility that includes utilities for changing SCSI device and controller settings (SCSSelect), for low-level formatting or verifying disk media (Disk Utilities), and for performing other functions. The ARC also contains a utility for creating, configuring, and managing arrays called Array Configuration Utility (ACU).

When you turn on or reboot your system, press **Ctrl+A** to access the ARC when prompted by the following message:

Press *Ctrl*<>*A* for Adaptec RAID Configuration Utility

Adaptec also provides a utility to create, configure, and manage arrays from an MS-DOS prompt. This utility is called the Array
Configuration Utility (ACU) for MS-DOS. The embedded BIOS-based ACU and the MS-DOS-based ACU are similar utilities. This chapter describes the functionality of ACU for MS-DOS only. For information about running the ACU for MS-DOS, see Running the ACU on page 13-2.

Interactive Versus Script Mode

When used in MS-DOS mode (also known as interactive mode), the ACU offers the same interface and features as the BIOS-based version (array creation, display, and deletion, as well as disk drive initialization). See Using Interactive Mode on page 13-3, for information on how to use the ACU’s interactive interface.

In addition, the ACU for MS-DOS offers a special command-line interface that enables you to create arrays based on parameters specified in a plain-text script file. It also enables you to configure certain controller channel properties. You can record a controller’s current array and channel configuration in a plain-text script file, allowing you to easily restore your configuration or create a configuration based on a script “template.” See Using Script Mode on page 13-8 for information on how to use the ACU’s scripting features.

Running the ACU

ACU.exe is on the CD that shipped with your controller. You can find by opening the CD and browsing to the directory:
Dos\Apps\Acu.

To run the ACU for MS-DOS:

1 Copy the utility (ACU.exe) onto a bootable MS-DOS floppy disk.
2 Insert this bootable floppy into your floppy disk drive (A:).
3 Reboot or restart your system.

If you issue the command ACU without any command-line switches, the ACU displays its main window and waits for your menu selection (interactive mode). If you include any command-line switches with the ACU command, ACU processes your command with no further interaction (command-line or script mode).
Using the Array Configuration Utility

The remainder of this chapter explains in detail how to use the ACU in both interactive and script modes.

Using Interactive Mode

When you issue the ACU command at the MS-DOS prompt without any command-line switches, the ACU displays its main window and waits for your menu selection. To select an ACU menu option, use the ↑ and ↓ keys, and press Enter. In some cases, selecting an option displays another menu. Press Tab to navigate between the fields within a dialog box. You can return to the previous menu at any time by pressing Esc.

Creating an Array with ACU

Before creating arrays, make sure the disks to be used as members of the array are connected and installed in your system (or enclosure). Note that any disks with MS-DOS partitions, disks with no usable space, or disks that are uninitialized appear dimmed and cannot be used for creating a new array. For information on how to initialize a disk drive, see page 13-7. If necessary, reboot your system to ensure that it detects all connected drives.

To create an array, select the drive or drives to be used in the array and then assign the desired properties to the array.

Selecting Segments for New Arrays

To select one or more segments to assign as members of the new array:

1. Use the ← and → arrow keys to select a channel.
2. Use the ↑ and ↓ keys to select the drives to assign to the new array and press Insert. The ACU displays the largest usable space available for each drive. You can use some or all of the available space from multiple drives to create the new array.

   To deselect a drive, highlight the drive and press Delete.

   Note that drives containing MS-DOS partitions, drives with no available space, or uninitialized drives appear dimmed and cannot be selected when creating a new array.

3. Press Enter when you have selected all segments for the new array. The ACU displays the Array Properties menu.
Assigning Array Properties

To assign properties to the new array:

1. From the **Array Properties** menu, select an array type and press **Enter**. Note that only those array types available according to the number of drives selected are displayed. For a description of the supported array types, see the installation guide shipped with your controller.

   The physical SCSI limitation for the controller is 15 drives per channel. The maximum number of drives allowed and minimum number of drives required depends on the RAID level. Consult **Table 13-1** for a listing of this information.

<table>
<thead>
<tr>
<th>RAID Level</th>
<th>Maximum Drives Allowed</th>
<th>Minimum Drives Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>RAID 0</td>
<td>48</td>
<td>2</td>
</tr>
<tr>
<td>RAID 1</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>RAID 5</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>RAID 10</td>
<td>48</td>
<td>4</td>
</tr>
<tr>
<td>RAID 50</td>
<td>48</td>
<td>6</td>
</tr>
</tbody>
</table>

2. Type in an optional label for the array and press **Enter**.

3. Enter the desired array size. The maximum array size available based on the segments you selected is displayed automatically. If you want to designate a different array size, type the desired array size and select **MB** (megabytes), **GB** (gigabytes), or **TB** (terabytes) from the drop-down list. If the available space from the selected segments is greater than the size specified, the remaining space will be available for use in other arrays.

4. Select the desired stripe size. The allowable stripe sizes are 16, 32, and 64 KB (the default). For RAID-50 arrays, 64 KB is the only stripe size allowed. The default stripe size gives the best overall performance in most network environments.

5. Specify whether you want to enable read caching for the array.
Specify the write caching setting for the array. The possible values are:

- **Enable when protected**—If supported, enables the write cache only when a battery is present and the battery’s charge status is OK.

- **Enable always**—If supported, enables the write cache even if no battery is present or the battery’s charge status is not OK. Note that setting an array’s write cache property to **Enable always** might result in data loss or corruption if power to the controller is lost when no battery is present or the battery loses its charge.

- **Disable**—Disables use of the write cache.

When you are finished, press **Done**.

**Managing Arrays**

Use the **Manage Arrays** option to view array properties, initialize arrays, make an array the boot array, or delete arrays. The following sections describe these operations in greater detail.

**Viewing Array Properties**

To view the properties of an existing array:

1. Select **Manage Arrays** from the **Main** menu.
2. In the **List of Arrays** dialog box, select the array you want to view information on and press **Enter**.
3. The **Array Properties** dialog box is displayed. The physical disks associated with the array are displayed here, except in the case of multilevel arrays (RAID 10 and RAID 50, for example). For dual-level arrays, highlight the displayed member and press **Enter** to display the second level. Press **Enter** again to display the physical disks associated with the array.

   **Note:** A failed drive is displayed in a different text color.

4. Press **Esc** to return to the previous menu.
Assigning Hot Spare Drives

To assign a spare drive to an array:

1. Select Manage Arrays from the Main menu.
2. On the List of Arrays dialog box, select the array you want to assign a spare drive to, and type Ctrl/s. The Hotspare Management for Array dialog box is displayed, which shows the drives that can be assigned as spare drives.
3. Select a drive and press the Insert key to assign the drive as a spare. The specified drive is displayed in the Assigned Hotspares drives list.
4. Press Enter to save the spare drive assignment. The following prompt is displayed:
   Have you finished managing Hotspare drives?
5. Type Y (yes) to return to the Main menu.

Removing Hot Spare Drives

To remove an assigned spare drive from an array:

1. Select Manage Arrays from the Main menu.
2. In the List of Arrays dialog box, select the array you want to remove the assigned spare drive from and type Ctrl/s. The Hotspare Management for Array dialog box is displayed, which shows a list of drives that can be assigned as spare drives and a list of drives that are assigned as spare drives.
3. From the Assigned Hotspares drives list, select the drive to be removed, then press Delete to remove the drive as a spare. The specified drive is displayed in the Select Hotspares drives list.
4. Press Enter to save the removed spare drive assignment. The following prompt is displayed:
   Have you finished managing Hotspare drives?
5. Type Y (yes) to return to the Main menu.
Using the Array Configuration Utility

Initializing a Disk Drive

You must initialize a drive before you can use it as part of an array. You can tell a drive is not available (and must be initialized) if it is not listed in the disk selection list or if it is listed but grayed out.

Caution: Initializing a disk deletes all data on the disk. (Essentially, it overwrites the partition table on the disk and makes all the previous data on the disk inaccessible.) If the drive is a member of an existing array, you might not be able to use that array again. Do not initialize a disk that is part of a boot array. The boot array is numbered 00 in the List of Arrays dialog box.

See Viewing Array Properties on page 13-5 for information on determining which disks are associated with a particular array.

To initialize a drive:

1. Select Initialize Drives from the Main menu.
2. Use the ← and → arrow keys to select a channel.
3. Select the disk(s) you want to initialize and press Insert.
4. Press Enter.
5. Read the warning message and ensure that you have selected the correct disk drive(s) to initialize. Type Y to continue.

Making an Array Bootable

You can make an array bootable so the system boots from the array instead of from a stand-alone (single) disk drive.

To make an array bootable:

1. Select Manage Arrays from the Main menu.
2. Select the array you want to make bootable and type Ctrl+B. This changes the selected array’s number to 00, making it the controller’s boot array.
3. Reboot the system.

Bear in mind the following:
You cannot make a non-00 array bootable if the array is in a build/verify or reconfiguration process.

The controller always uses the lowest numbered array as its bootable array. If you delete array 00 for any reason, the next higher numbered array becomes the boot array. Mark the correct array as the bootable array by making it array 00.

If the controller is not a boot device, you can disable its runtime BIOS to conserve ROM.

Deleting Arrays

**Caution:** Back up the data on an array before you delete it. All data on the array is lost when you delete the array, and you cannot restore a deleted array.

To delete an existing array:

1. Select **Manage Arrays** from the **Main** menu.
2. Select the array you want to delete and press **Delete**.
3. In the **Array Properties** dialog box, press **Delete** again and press **Enter**. The following prompt is displayed:
   
   **Warning!!** Deleting will erase all data from the array.
   Do you still want to continue? *(Yes/No):*

4. Press **Yes** to delete the array or **No** to return to the previous menu. At the **Array Properties** dialog box, press **Delete** again and press **Enter**.
5. Press **Esc** to return to the previous menu.

Using Script Mode

To use the ACU scripting features, issue the command **ACU** with one of the following required switches:

- **/P**—Playback mode. This mode configures arrays and channel settings from a specified script file.
Using the Array Configuration Utility

- /R — Record mode. This mode saves a controller’s array and channel configuration in a specified script file for later playback.

On the ACU command line, you can also specify the name of a log file to record the status of the playback or record operation. The ACU records in the log any errors or warnings encountered.

When running in playback or record mode, ACU stores the status of the playback or record operation in the MS-DOS variable ERRORLEVEL on exit, allowing it to be used within an MS-DOS batch file. See Error Handling on page 13-24 for more information on error handling.

Table 13-2 lists the required and optional ACU command-line switches.

Table 13-2  Command-Line Switches

<table>
<thead>
<tr>
<th>Switch</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>/P &lt;file&gt;</td>
<td>Indicates playback mode. In this mode, the ACU reads the contents of the specified script file and creates arrays and configures channel settings based on the properties defined in the script. The &lt;file&gt; is the name of the script file. It can include a drive, directory, and file name and extension, but only the file name is required. If no drive is specified, the current default drive is used. If no directory is specified, the current default directory is used. You can include any extension or no extension. Note that the ACU exits with an error if you do not include either the /P or /R switch (but not both) on the command line.</td>
</tr>
<tr>
<td>/R &lt;file&gt;</td>
<td>Indicates record mode. In this mode, the ACU scans the controller’s current array and channel configuration and creates the specified script file based on the configuration. The &lt;file&gt; is the name of the script file. It can include a drive, directory, and file name and extension, but only the file name and extension (.MLC) are required. If no drive is specified, the current default drive is used. If no directory is specified, the current default directory is used. Note that the ACU exits with an error if you do not include either the /P or /R switch (but not both) on the command line.</td>
</tr>
</tbody>
</table>
Optional log file name. If you include this switch, the ACU records its activity and any errors it encounters in the log file. If no /L switch is specified, the ACU displays any status and errors on the screen. The <file> is a standard MS-DOS file, which can include a drive, directory, file name and extension. Only the file name and extension (.LOG) are required. If no drive is specified, the current default drive is used. If no directory is specified, the current default directory is used.

Optional controller number. In systems with more than one controller, this switch specifies the controller on which to operate. Controllers are numbered from 0 to number of controllers minus 1. If no /C switch is specified, controller 0 is used. Note that the number assigned to a particular controller is dependent on the controller’s physical PCI slot and the order in which your system scans its PCI slots.
Playback Mode

Playback mode enables you to create one or more arrays based on the properties defined in a script file. It also enables you to configure certain properties for each channel on the controller.

When you create an array, you can specify any of the properties listed in Table 13-3.

Table 13-3  Array Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Supported array types are:</td>
</tr>
<tr>
<td></td>
<td>■ Volume</td>
</tr>
<tr>
<td></td>
<td>■ RAID 0 (stripe)</td>
</tr>
<tr>
<td></td>
<td>■ RAID 1 (mirror)</td>
</tr>
<tr>
<td></td>
<td>■ RAID 5</td>
</tr>
<tr>
<td></td>
<td>■ RAID 10 (stripe of mirrors)</td>
</tr>
<tr>
<td></td>
<td>■ RAID 50 (stripe of RAID 5)</td>
</tr>
<tr>
<td>Size</td>
<td>Size of the array to be created. Size can be specified in megabyte (MB),</td>
</tr>
<tr>
<td></td>
<td>gigabyte (GB), or terabyte (TB) units, or Maximum to specify the maximum</td>
</tr>
<tr>
<td></td>
<td>size based on the given type and disks.</td>
</tr>
<tr>
<td>Label</td>
<td>Alphanumeric string uniquely identifying the array.</td>
</tr>
<tr>
<td>StripeSize</td>
<td>Size (in KB) of contiguous data distributed across a “striped” array (RAID</td>
</tr>
<tr>
<td></td>
<td>0, RAID 5, RAID 10, or RAID 50).</td>
</tr>
<tr>
<td>Cache settings</td>
<td>You can specify the following values for the caches:</td>
</tr>
<tr>
<td></td>
<td>■ ReadCache—Yes (enable), or No (disable)</td>
</tr>
<tr>
<td></td>
<td>■ WriteCache—One of the following values:</td>
</tr>
<tr>
<td></td>
<td>Yes—Enable when protected</td>
</tr>
<tr>
<td></td>
<td>No—Disable</td>
</tr>
<tr>
<td></td>
<td>Always—Enable always</td>
</tr>
<tr>
<td>Drives</td>
<td>Disk drives to use in creating the array. Drives are identified by their</td>
</tr>
<tr>
<td></td>
<td>channel number, ID number, and logical unit number (LUN).</td>
</tr>
<tr>
<td>HotspareDrives</td>
<td>Disk drives to assign as spare drives for this array.</td>
</tr>
<tr>
<td></td>
<td>Drives are identified by their channel number, ID number, and LUN.</td>
</tr>
</tbody>
</table>
In addition, there are other array properties that enable you to control the various array settings during creation. See *Array Definition Block Properties* on page 13-16 for the complete list of array properties.

---

**Note:** You can configure each individual channel on the controller using the property, which specifies the SCSI ID number of the controller on the channel.

---

**Initializing Drives**

By default, when you use playback mode to create arrays, the ACU initializes only those drives specified by the `Drives` property keyword in the script file. It performs this initialization step before creating any new arrays. For example, consider a script file that defines the following new arrays:

- RAID 1 (mirror) with the property `Drives=0:0:0, 1:0:0`
- RAID 5 with the property `Drives=0:1:0, 0:2:0, 0:3:0`

As a result of executing this script file, the ACU initializes all five of the drives comprising the two arrays before creating any arrays. Any other drives connected to the controller are not affected.

Initializing a drive automatically deletes any existing arrays with that drive as their member. For example, if you specify drive 0:0:0 in an array’s `Drives` property and that drive happens to be part of a RAID 0 (stripe) array, the ACU deletes the stripe array when it initializes the drive. Note that existing arrays with drive members that are not specified in any `Drives` property within the script are not affected.

In some cases, you might want the ACU to initialize all drives connected to the controller, even those that are not specified in a script’s `Drives` property. This ensures that all drives are initialized and any existing arrays are deleted before any new arrays are created. You can specify `InitializeAll=Yes` within any array definition to instruct the ACU to perform this task. Unlike most array properties, the `InitializeAll=Yes` property is a global ACU setting and does not apply only to the array whose definition it appears in. Thus, you need only specify `InitializeAll=Yes` once within any array definition to produce the desired action.
Because the ACU reads the entire script file before creating any arrays, the position of the InitializeAll=Yes property within the script is not significant. Continuing the previous example, if InitializeAll=Yes is specified in the second RAID 5’s definition, the ACU initializes all drives before creating the first RAID 0.

**Note:** If a build/verify is in progress when an array is deleted, it will automatically be terminated.

See *The InitializeAll Keyword* on page 13-20 for details on the syntax of the InitializeAll property.

**Record Mode**

Record mode writes an existing controller’s array configuration to a specified script file, enabling you to create the same configuration by running the ACU in playback mode with the resulting script. In addition, record mode lists certain controller properties that can be set in playback mode.

Because the ACU supports only a subset of array types available through the CLI and the GUI, it cannot record all the possible array configurations. If the ACU encounters an array that it cannot create it displays a warning (and records the warning in its log file, if that switch is used) and does not record any properties for that array in its script file.

The script file is limited to one controller and its associated array configuration files. Although you can have multiple controllers on a single system, you cannot record all of the controllers and their associated array configurations in one file. To record multiple controllers, use the ACU record mode once for each individual controller. Your end result will be multiple files on the same diskette with one file corresponding to each controller.

**Determining Build/Verify/Clear Status**

When using playback mode to create an array, you can specify whether to wait for an array’s initial build/verify or clear to complete or to continue while the build/verify or clear proceeds in the background. If you instruct the ACU to continue (Wait=No),
you need to be able to check the status of a background build/verify or clear task and determine when it is complete.

The ACU provides a way to do this. When you use record mode to record a controller’s configuration and you specify a log file (/L switch), the ACU writes build/verify and clear status information about each array in the configuration to the log file. An application or batch file can then parse the resulting log file to determine whether an array’s build/verify or clear is complete, in progress (a percentage of the task completed), or failed.

The following example shows a log file of a recorded configuration consisting of three arrays:

Reading array information ...Passed
Scanning for Drives ...Passed
Reading cache values...Passed

Array #0 Status : OK
Array #1 Status : BUILD/VERIFY 30%
Array #2 Status : BUILD/VERIFY/CLEAR FAILED

Each status line consists of the prefix Array#<n> Status :, where <n> is the array ID, followed by the status. The possible status values are as follows:

- **OK**
  
  Indicates a nonredundant array (no build required) or a redundant array whose build task completed successfully.

- **BUILD/VERIFY <n>%
  CLEAR <n>%**

  Indicates a build/verify (or clear) is currently in progress, where <n> is the percentage of the operation that is complete. The percentage is an integer between 0 and 99, inclusive.

- **BUILD/VERIFY/CLEAR FAILED**

  Indicates a build/verify or clear that did not complete due to a data error or other unexpected problem.

When a build/verify task runs on a multilevel array, the build/verify occurs on the child arrays and not on the parent array. Consequently, the parent task always indicates 0% and the child task indicates 0% to 100%. When a clear task runs on a multilevel array, the clearing occurs on the parent array and not on the child.
arrays. Consequently, the parent task indicates 0% to 100% and the child tasks always indicates 0%.

**Build/Verify Operations on RAID 10 Arrays**

For a RAID 10 array, the status message indicates the percent of the build/verify completed for the parent and child tasks. The status updates to **OK** when the tasks complete. A sample RAID 10 build status is as follows:

Array #1 Status : BUILD/VERIFY = 30%

**Build/Verify Operations on RAID 50 Arrays**

For a RAID 50 array, the status message indicates the percent of the build/verify completed for the parent and child tasks. The status updates to **OK** when the tasks complete. A sample RAID 50 build/verify status is as follows:

Array #1 Status : BUILD/VERIFY = 30%

**Script File Syntax**

An ACU script file consists of one of the following:

- **Array definition block**—Specifies the properties of an array, such as type, size, and cache settings. The block begins with the keyword `Array` and ends with the keyword `End`.

- **Channel definition block**—Specifies the properties of a controller channel, such as `ControllerID`. The block begins with the keyword `Channel` and ends with the keyword `End`.

Each array or channel property consists of a property keyword and assigned value, separated by an equal sign (=). Each property must be on its own line in the script. The order of properties within a block (other than the starting `Array` or `Channel` keyword, and the ending `End` keyword) is not significant.

Some array properties, such as `Type`, are required; others are optional. Table 13-4 lists and describes array definition block properties, indicates which properties are optional, and provides the default value used when that property is not specified.

All keywords can be written in any combination of upper- or lowercase characters. Script lines can include any number of spaces and tabs both within keywords, or when separating keywords and their values. Blank lines are ignored.
The pound character (#) indicates the start of a comment. The ACU ignores all characters on a line that begins with a pound sign. You can use comments following array property assignments or on their own lines. See Example: Invoking the ACU and Using a Script on page 13-27 to see a sample script that includes comments.

Array Definition Block Properties

Table 13-4 lists the properties that can be specified within an array definition block. The table lists each property’s keyword, whether it is required, and its default value (if any). Note that the keywords are arranged so the required keywords are listed first.

Table 13-4 Array Definition Block Properties

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Required?</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>Yes</td>
<td>None</td>
<td>Indicates the start of an array definition block. See page 13-18 for more information.</td>
</tr>
<tr>
<td>Drives</td>
<td>Yes</td>
<td>None</td>
<td>Specifies the disk drives used in creating the array. See page 13-18 for more information.</td>
</tr>
<tr>
<td>Type</td>
<td>Yes</td>
<td>None</td>
<td>Indicates the type of array to create. See page 13-19 for more information.</td>
</tr>
<tr>
<td>End</td>
<td>Yes</td>
<td>None</td>
<td>Indicates the end of an array definition block. See page 13-19 for more information.</td>
</tr>
<tr>
<td>HotsparesDrives</td>
<td>No</td>
<td>None</td>
<td>Specifies the hot spare drives to assign to the array. See page 13-19 for more information.</td>
</tr>
</tbody>
</table>
### Table 13-4  Array Definition Block Properties

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Required?</th>
<th>Default Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>InitializeAll</td>
<td>No</td>
<td>No</td>
<td>Indicates whether to initialize all the drives connected to the controller. See page 13-20 for more information.</td>
</tr>
<tr>
<td>Method</td>
<td>No</td>
<td>Build/Verify</td>
<td>Indicates which method (build/verify, clear or quick init) to use when creating a RAID 1, 5, 10 or 50 array. See page 13-21 for more information.</td>
</tr>
<tr>
<td>ReadCache</td>
<td>No</td>
<td>Yes</td>
<td>Indicates whether read caching is enabled for this array. See page 13-21 for more information.</td>
</tr>
<tr>
<td>Size</td>
<td>No</td>
<td>Maximum</td>
<td>Specifies the size of the array. See page 13-22 for more information.</td>
</tr>
<tr>
<td>StripeSize</td>
<td>No</td>
<td>32</td>
<td>Specifies the size of contiguous I/O, in bytes. See page 13-22 for more information.</td>
</tr>
<tr>
<td>Wait</td>
<td>No</td>
<td>Yes</td>
<td>Indicates whether the ACU should wait for the new array's build/verify or clear to complete before continuing. See page 13-22 for more information.</td>
</tr>
</tbody>
</table>
The following sections describe each of these keywords in detail.

**The Array Keyword**

*Array* is a required keyword, indicating the start of an array definition block. It accepts an optional array label value.

Examples:
```
Array
Array=MyData
```

**The Drives Keyword**

*Drives* is a required keyword, specifying the disk drives to use in creating the array. There is no default value.

A drive is identified by its channel number, ID (target), and LUN, separated by colons. For example, `0:0:0` or `1:2:0`. Separate multiple drive identifiers with commas.

**Note:** Any drive specified within the script file will first be initialized, which destroys any data on that drive. If a drive is specified in more than one array definition block in a script, it will be initialized only once.

Examples:
```
Drives=0:0:0
Drives=0:0:0,0:1:0,0:2:0
```
The Type Keyword

Type is a required keyword, indicating the type of array to create. There is no default value. Consult Table 13-5 for a listing of the possible values for the keyword Type and the minimum number of drives required for each type.

<table>
<thead>
<tr>
<th>Type Keyword Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volume</td>
</tr>
<tr>
<td>RAID0</td>
</tr>
<tr>
<td>RAID1</td>
</tr>
<tr>
<td>RAID5</td>
</tr>
<tr>
<td>RAID10 (stripe of RAID 1 mirrors)</td>
</tr>
<tr>
<td>RAID50 (stripe of RAID 5s)</td>
</tr>
</tbody>
</table>

Examples:
Type=Volume
Type=RAID1

Note: For information about the maximum number of drives allowed and minimum number of drives allowed, see RAID Levels and Drives Information on page 13-4.

The End Keyword

End is a required keyword, indicating the end of an array definition block.

Example:
End

The HotsparesDrives Keyword

HotspareDrives is an optional keyword, specifying the spare drives to assign to the array. Spare drives are specified in the same way as the Drives property. If HotspareDrives is not specified, no spare drives are assigned to the array.

Note the following:
When assigning spare drives to a RAID 10 or a RAID 50, the ACU assigns all the drives in the list to all the arrays within the RAID 10 (or RAID 50).

ACU only creates dedicated hot spares. If the same drive is assigned to protect multiple arrays, only the last array that drive is assigned to will be protected.

The ACU makes no checks to ensure that the amount of available space on the specified spare drives is sufficient to serve as failover for the given array.

Example:

HotspareDrives=1:0:0,1:1:0

The InitializeAll Keyword

InitializeAll is an optional keyword, indicating that all the drives connected to the controller should be initialized and any existing arrays deleted before creating a new array. This property applies to all drives on all channels of the controller. If InitializeAll is not specified, the value No is used.

Possible values are as follows:

- Yes—Initialize all drives.
- No—Do not initialize all drives; only those drives specified with the Drives property keyword are initialized.

The InitializeAll keyword is both global and position-independent within a script file. If InitializeAll=Yes appears in any array definition block within the file, all drives connected to the controller are initialized and any existing arrays are deleted before any new arrays are created.

If there is no InitializeAll=Yes property specified anywhere in the script, the ACU initializes only those drives specified with the Drives property keyword. See Initializing a Disk Drive on page 13-7 for more details.

Note that it is not necessary to specify InitializeAll=Yes in more than one array definition block. If both InitializeAll=Yes and InitializeAll=No are specified within a script file, regardless of their position within the file, InitializeAll=Yes is the overriding value.
Using the Array Configuration Utility

Examples:
  InitializeAll=Yes
  InitializeAll=No

The Method Keyword

Method is an optional keyword, indicating which method to use when creating a RAID 5 array. If Method is not specified, the value Build is used.

Possible values are:
- **Build**—Build/verify the array.
- **Clear**—Clear the array.
- **Quick Init**—Make the array available immediately

Overall, the Build method takes longer than Clear, but it enables you to begin using the array immediately. Although faster, Clear must complete before you can begin using the array. Quick Init makes the array available immediately, but for RAID 5 and RAID 50 write performance will be impacted until a Verify with Fix is run on the array.

⚠️ **Note:** The Method property applies only to redundant arrays (RAID 1, 10, 5 and 50).

Examples:
  Method=Build
  WaitForClear=No

The ReadCache Keyword

The ReadCache keyword indicates whether the array uses read caching.

Possible values are:
- **Yes**—Enable read caching.
- **No**—Disable read caching.

If no ReadCache property is specified, the value Yes is used.

Example:
  ReadCache=Yes
**The Size Keyword**

The `Size` keyword specifies the size of the array. Specify the size as an integer or a decimal number, followed by the unit keyword MB (megabytes), GB (gigabytes), or TB (terabytes). A unit keyword is required with a numeric size value. If no unit keyword is specified, the ACU exits with an error.

Specify the keyword `Maximum` to create an array using the maximum available space, based on the array type and drives selected. If no `Size` property is specified, the value `Maximum` is used.

Examples:

```
Size=2.5GB
Size=300MB
Size=Maximum
```

**The StripeSize Keyword**

The `StripeSize` keyword specifies the size of contiguous I/O (in KB) written to each member of a striped array before switching to the next member.

This property applies only to array types RAID 0, RAID 5, RAID 50, and RAID 10. The ACU exits with an error if this property is specified for any other array types.

The possible values for `StripeSize` are 16, 32, and 64. Do not specify a unit keyword for the stripe size because all values are in kilobytes.

If no `StripeSize` property is specified and the array type supports this property, the value 64 is used by default.

Example:

```
StripeSize=64
```

**The Wait Keyword**

The `Wait` keyword indicates whether the ACU should wait for the new array’s build/verify or clear to complete before continuing.

The `Wait` property is optional; if not specified, the ACU waits for the array’s build/verify or clear to complete before continuing. Specify `Wait=No` to allow the ACU to continue while the build/verify or clear completes in the background.1
Examples:
Wait=Yes
Wait=No

The WaitForBuild Keyword
The WaitForBuild keyword is provided for backward compatibility only. Use the Wait keyword instead. The WaitForBuild keyword is still recognized and can be used interchangeably with the Wait keyword.

The WriteCache Keyword
The WriteCache keyword indicates whether write caching is used for this array if write caching is supported for the system.
Possible values are as follows:
- Yes—Enable the write cache if the cache is protected by a battery and the battery’s status is OK.
- No—Disable the write cache.
- Always—Enable the write cache even if no battery is present, or the battery’s status is not OK.

Note: Setting an array’s WriteCache property to Always might result in data loss or corruption if power to the controller is lost when no battery is present or the battery loses its charge.

If no WriteCache property is specified, the value Yes is used.
Examples:
WriteCache=Yes
WriteCache=Always

1 Array build/verifies and clears are tasks executed entirely on the controller and do not depend on the ACU or any other host application to complete. If the controller is powered off before the build/verify or clear completes and is then restarted, the build/verify or clear task resumes without any user intervention.
Channel Definition Block Properties

Table 13-6 lists properties that you can specify within a channel definition block. The table lists each property’s keyword and a description of the property.

Channel properties, unlike array properties, have no default values. If a channel property keyword is not specified, the corresponding controller setting for that channel is not changed. Similarly, if no channel definition block is specified for a channel, the current controller settings for that channel are not changed.

Table 13-6 Channel Definition Block Properties

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>Specifies the channel number to which the channel properties apply. This keyword begins a channel definition block. Channels are numbered from zero to the maximum number of channels on the controller minus one. You can include multiple channel definition blocks within a script file, each beginning with a Channel keyword and value. For example: Channel=0</td>
</tr>
<tr>
<td>End</td>
<td>Indicates the end of a channel definition block. For example: End</td>
</tr>
<tr>
<td>ControllerID</td>
<td>Specifies the SCSI ID of the controller on the channel. Normally, the controller is assigned SCSI ID 7 on each of its channels. You can specify any ID value between 0 and 7. If you do not specify a ControllerID keyword for the channel, the channel’s current controller ID setting is not changed. For example: ControllerID=7</td>
</tr>
</tbody>
</table>
Using the Array Configuration Utility

error message to the log file. Otherwise, it displays the message on the screen.

Upon exit, the ACU returns its exit status in the DOS environment variable `ERRORLEVEL`. When the ACU is run within a DOS batch file, that batch file can examine the ACU’s exit status using the DOS command `IF ERRORLEVEL n`. The batch file can use this command to test the ACU success or failure status. The batch file can test for a specific error using a series of `IF ERRORLEVEL n` commands.

Table 13-7 lists the possible status codes returned by the ACU.

<table>
<thead>
<tr>
<th>Code</th>
<th>Error/Information</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>You ran ACU and made no changes.</td>
<td>The ACU exited with no errors (success) and no report is required.</td>
</tr>
<tr>
<td>1</td>
<td>No Controller Found.</td>
<td>The ACU did not detect any controllers in the system.</td>
</tr>
<tr>
<td>2</td>
<td>Syntax or logical error in the script file.</td>
<td>The ACU encountered an invalid command or keyword in the specified script file.</td>
</tr>
<tr>
<td>3</td>
<td>Unable to open file.</td>
<td>The ACU was unable to open the specified script or log file.</td>
</tr>
<tr>
<td>4</td>
<td>Error in the command line parameters.</td>
<td>You passed an invalid command-line switch to the ACU. (See <em>Using Script Mode</em> on page 13-8 for the list of valid command switches.)</td>
</tr>
<tr>
<td>5</td>
<td>Unable to read system configuration.</td>
<td>The ACU was unable to get the configuration information from the specified controller.</td>
</tr>
<tr>
<td>6</td>
<td>No drives detected.</td>
<td>The ACU did not detect any disk drives attached to the selected controller.</td>
</tr>
<tr>
<td>7</td>
<td>Specified drive not found in system.</td>
<td>The disk drive you specified does not exist on the selected controller.</td>
</tr>
<tr>
<td>8</td>
<td>Specified array size too small.</td>
<td>You specified an array size that is smaller than the minimum size allowed for this array.</td>
</tr>
<tr>
<td>9</td>
<td>Specified array size too big.</td>
<td>You specified a array size that is larger than the maximum size allowed for this array.</td>
</tr>
</tbody>
</table>
When using ACU in playback or record mode, note the following:

- When recording an array, the ACU does not create a `Wait` keyword within an array’s definition block in a script file.

  When playing back any script file generated from the ACU record option, be aware that the ACU will use the default setting `Wait=Yes` when creating an array unless you first edit the script file and include a `Wait=No` line in the array’s definition block.

- When recording a RAID 10 (or RAID 50), the ACU cannot map spare drives assigned to the individual mirror sets (or individual RAID 5s in the case of RAID 50) to the `HotspareDrives` list in the resultant script file. The script file syntax allows only a single list of spare drives to be assigned to any given array.
In this case, the ACU creates the HotspareDrives list using all the drives assigned to the lower-level mirror set arrays within the RAID 10 (or RAID 50). When playing back this script, the ACU assigns all the drives in the HotspareDrives list to all the mirror set arrays making up the RAID 10 (or RAID 50). However, this might not exactly match the original spare drive assignments to the mirror set arrays.

■ When recording an array, the ACU creates a separate channel definition block for each channel on the controller. Each block includes all the property keywords and values reflecting the channel’s current settings. Edit the script file as necessary to change any of the channel’s settings or delete keywords to ensure the controller’s corresponding channel setting is not changed.

Example: Invoking the ACU and Using a Script

The following MS-DOS command invokes the ACU and creates arrays on controller 1 based on the array properties defined in the script file A:\RAID.ACU. It also configures the properties of channel 0 and saves a log of the operation in the log file C:\RAID.LOG.

A:\> ACU /P A:\RAID.ACU /L C:\RAID.LOG /C1

The following sample script file is the RAID.ACU script used in the previous ACU command. This script creates three arrays—a 500 MB, single-disk volume; a 2 GB, two-drive RAID 1; and a “maximum size”, three-drive RAID 5—and sets the properties of channel 0.

# Script to create volume, mirror, and RAID-5 arrays
# Create a 500MB volume labeled 'MySystem'
Array=MySystem
Type=Volume
Size=500MB
Drives=0:0:0

End

# Create a 2GB mirror labeled 'MyMirror'
Array=MyMirror
Type=RAID1
Size=2GB
Adaptec SCSI RAID Software Reference Guide

# Use drives on channels 0 and 1
Drives=0:1:0,1:1:0

# Disable write cache
WriteCache=No

# Assign 2 spare drives
HotspareDrives=1:2:0, 1:3:0
End

# Create a maximum size RAID 5 labeled 'MyData'
Array=MyData
Type=RAID5
Size=Maximum

# Use the maximum stripe size
StripeSize=64

# Clear the array (don’t build/verify it)
Method=Clear

# Don’t wait for clear to complete
Wait=No

# Use drives 2, 3, 4 on channel 0
Drives=0:2:0, 0:3:0, 0:4:0

# Assign drive 1:0:0 as the spare drive.
HotspareDrives=1:0:0
End

# Set Channel 0 properties
Channel=0

# Set the controller’s SCSI ID to 7
ControllerID=7
End
Automated Scripts

In this Appendix

Creating an Automated Script

This appendix describes how to write DOS batch files and CLI command scripts to perform the controller details task.

You can use the CLI commands alone in CLI command scripts or in combination with DOS commands in DOS batch files. Also, you can invoke CLI command scripts in a DOS batch file. You should already understand how to write DOS batch files and be familiar with Windows-related backup commands.

To execute a CLI command script, type the @ (at sign) followed by the file name that contains the CLI commands, for example:

```
AAC0>@array.txt
```

Creating an Automated Script

In its simplest form, a CLI command script is a text file that contains valid CLI commands. A carriage return linefeed follows each command. The following CLI command script:

1. Opens controller aac0 by invoking the CLI command open.
2. Invokes controller details.
3  Closes controller aac0 by invoking the CLI command close.
4  Exits the example CLI command script.
   open AAC0
   controller details
   close AAC0
   exit