Copyright

©2007 Adaptec, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of Adaptec, Inc., 691 South Milpitas Blvd., Milpitas, CA 95035.

Trademarks

Adaptec, Adaptec Storage Manager, SCSISelect, SATASelect, SerialSelect and the Adaptec logo are trademarks of Adaptec, Inc., which may be registered in some jurisdictions.

Microsoft and Windows are trademarks of Microsoft Corporation in the US and other countries, used under license.

Red Hat is a trademark of Red Hat, Inc. in the US and other countries, used under license.

Novell and NetWare are trademarks of Novell, Inc. in the US and other countries, used under license.

All other trademarks are the property of their respective owners.

Changes

The material in this document is for information only and is subject to change without notice. While reasonable efforts have been made in the preparation of this document to assure its accuracy, Adaptec, Inc. assumes no liability resulting from errors or omissions in this document, or from the use of the information contained herein.

Adaptec reserves the right to make changes in the product design without reservation and without notification to its users.

Disclaimer

IF THIS PRODUCT DIRECTS YOU TO COPY MATERIALS, YOU MUST HAVE PERMISSION FROM THE COPYRIGHT OWNER OF THE MATERIALS TO AVOID VIOLATING THE LAW WHICH COULD RESULT IN DAMAGES OR OTHER REMEDIES.
Adaptec Customer Support

If you have questions about installing or using your Adaptec product, check this document first—you will find answers to most of your questions. If you need further assistance, use the support options listed below. To expedite your service, have your computer in front of you.

Technical Support Identification (TSID) Number

- Before contacting Technical Support, you need your unique 12-digit TSID number. The TSID number identifies your product and support status.
- The TSID number is included on a white, bar-coded label, like this example:

```
THIS TSID NUMBER WILL
BE REQUIRED WHEN
CONTACTING TECHNICAL
SUPPORT.
```

- Affix a copy of the TSID label to the CD jacket so that you don't lose it.

North America

- Search the Adaptec Support Knowledgebase (ASK) at ask.adaptec.com for articles, troubleshooting tips, and frequently asked questions for your product.
- For information about Adaptec's support options, call +1 408-957-2550, 24 hours per day, 7 days per week. To speak with a Technical Support Specialist,
 - For Hardware products call +1 408-934-7274, Monday to Friday, 5:00 A.M. to 5:00 P.M., Pacific Time.
 - For RAID and Fibre Channel products call +1 321-207-2000, Monday to Friday, 5:00 A.M. to 5:00 P.M., Pacific Time.
- For support via e-mail, submit your question at ask.adaptec.com.
- You can order Adaptec products, including accessories and cables, by calling +1 408-957-7274. Or, you can order cables online at www.adaptec.com/en-US/products/cables/.

Europe

- German: Call +49 89 43 66 55 22, Monday to Friday, 9:00 to 17:00, CET. For support via e-mail, submit your question at ask-de.adaptec.com.
- French: Call +49 89 43 66 55 33, Monday to Friday, 9:00 to 17:00, CET. For support via e-mail, submit your question at ask-fr.adaptec.com.
- English: Call +49 89 43 66 55 44, Monday to Friday, 9:00 to 17:00, GMT. For support via e-mail, submit your question at ask.adaptec.com.

Japan

- Visit our Web site at www.adaptec.co.jp.
- Call +81-3-3831-5190.
Limited 3-Year Hardware Warranty

1. Adaptec, Inc. (“Adaptec”) warrants to the purchaser of this product that it will be free from defects in material and workmanship for a period of three (3) years from the date of purchase. If the product should become defective within the warranty period, Adaptec, at its option, will repair or replace the product, or refund the purchaser’s purchase price for the product, provided it is delivered at the purchaser’s expense to an authorized Adaptec service facility or to Adaptec.

2. Repair or replacement parts or products will be furnished on an exchange basis and will either be new or reconditioned. All replaced parts or products shall become the property of Adaptec. This warranty shall not apply if the product has been damaged by accident, misuse, abuse or as a result of unauthorized service or parts.

3. Warranty service is available to the purchaser by delivering the product during the warranty period to an authorized Adaptec service facility or to Adaptec and providing proof of purchase price and date. The purchaser shall bear all shipping, packing and insurance costs and all other costs, excluding labor and parts, necessary to effectuate repair, replacement or refund under this warranty.

4. For more information on how to obtain warranty service, write or telephone Adaptec at 691 South Milpitas Boulevard, Milpitas, CA 95035, (800) 959-7274.

5. THIS LIMITED WARRANTY DOES NOT EXTEND TO ANY PRODUCT WHICH HAS BEEN DAMAGED AS A RESULT OF ACCIDENT, MISUSE, ABUSE, OR AS A RESULT OF UNAUTHORIZED SERVICE OR PARTS.

6. THIS WARRANTY IS IN LIEU OF ALL OTHER EXPRESS WARRANTIES WHICH NOW OR HEREAFTER MIGHT OTHERWISE ARISE RESPECT TO THIS PRODUCT. IMPLIED WARRANTIES, INCLUDING THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT SHALL (A) HAVE NO GREATER DURATION THAN 3 YEARS FROM THE DATE OF PURCHASE, (B) TERMINATE AUTOMATICALLY AT THE EXPIRATION OF SUCH PERIOD AND (C) TO THE EXTENT PERMITTED BY LAW BE EXCLUDED. IN THE EVENT THIS PRODUCT BECOMES DEFECTIVE DURING THE WARRANTY PERIOD, THE PURCHASER'S EXCLUSIVE REMEDY SHALL BE REPAIR, REPLACEMENT OR REFUND AS PROVIDED ABOVE. INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION LOSS OF DATA, ARISING FROM BREACH OF ANY EXPRESS OR IMPLIED WARRANTY ARE NOT THE RESPONSIBILITY OF ADAPTEC AND, TO THE EXTENT PERMITTED BY LAW, ARE HEREBY EXCLUDED BOTH FOR PROPERTY DAMAGE, AND TO THE EXTENT NOT UNCONSCIONABLE, FOR PERSONAL INJURY DAMAGE.

7. SOME STATES DO NOT ALLOW THE EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR CONSUMER PRODUCTS, AND SOME STATES DO NOT ALLOW LIMITATIONS ON HOW LONG AN IMPLIED WARRANTY LASTS, SO THE ABOVE LIMITATION OR EXCLUSIONS MAY NOT APPLY TO YOU.

8. This warranty gives you specific legal rights, and you may also have other rights which vary from state to state.
Regulatory Compliance Statements

Federal Communications Commission Radio Frequency Interference Statement

WARNING: Changes or modifications to this unit not expressly approved by the party responsible for compliance could void the user’s authority to operate the equipment.

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to Part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. However, if this equipment does cause interference to radio or television equipment reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between equipment and receiver.
- Connect the equipment to an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/television technician for help.
- Use a shielded and properly grounded I/O cable and power cable to ensure compliance of this unit to the specified limits of the rules.

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference and (2) this device must accept any interference received, including interference that may cause undesired operation.

European Union Compliance Statement

This Information Technology Equipment has been tested and found to comply with EMC Directive 89/336/EEC, as amended by 92/31/EEC and 93/68/EEC, in accordance with:

 - EN61000-4-2 (1995) Electrostatic discharge: ±4 kV contact, ±8 kV air
 - EN61000-4-3 (1996) Radiated immunity
 - EN61000-4-4 (1995) Electrical fast transients/burst: ±1 kV AC, ±0.5 kV I/O
 - EN61000-4-5 (1995) Surge ±1 kV differential mode, ±2 kV common mode
 - EN61000-4-6 (1996) Conducted immunity: 3 V
 - EN61000-4-11 (1994) Supply dips and variation: 30% and 100%

In addition, all equipment requiring U.L. listing has been found to comply with EMC Directive 73/23/EEC as amended by 93/68/EEC in accordance with EN60950 with amendments A1, A2, A3, A4, A11.

Australian/New Zealand Compliance Statement

This device has been tested and found to comply with the limits for a Class B digital device, pursuant to the Australian/New Zealand standard AS/NZS 3548 set out by the Spectrum Management Agency.

Canadian Compliance Statement

This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations. Cet appareil numérique de la classe B respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Japanese Compliance (Voluntary Control Council Initiative)

This equipment complies to class B Information Technology equipment based on VCCI (Voluntary Control Council for Interface). This equipment is designed for home use but it may causes radio frequency interference problem if used too near to a television or radio. Please handle it correctly per this documentation.

- CAUTION: Risk of explosion if the battery is replaced by an incorrect type. Dispose of used batteries according to the instructions.
Contents

About This Guide
- What You Need to Know Before You Begin ... 12
- Terminology Used in this Guide .. 12
- How to Find More Information .. 12

Kit Contents and System Requirements
- Kit Contents .. 14
- System Requirements.. 14

About Your RAID Controller
- Standard RAID Controller Features ... 16
 - Array-level Features .. 16
 - Advanced Data Protection Suite ... 16
- Adding Enhanced Features .. 17
 - Using a Feature Key to Unlock Enhanced Features 17
- Adding a Battery Backup Module ... 17
- Upgrading the Controller Firmware ... 17
- About the Adaptec 3085 ... 18
- About the Adaptec 3405 ... 19
- About the Adaptec 3805 ... 20
- About the Adaptec 31205 ... 21
- About the Adaptec 31605 ... 22
- About the Adaptec 4000 ... 23
- About the Adaptec 4800SAS .. 24
- About the Adaptec 4805SAS .. 25
- About the Adaptec 2420SA ... 26
- About the Adaptec 2820SA ... 27
- About the Adaptec 2130SLP .. 28
- About the Adaptec 2230SLP .. 29
Getting Started

Choosing a RAID Level... 31
Selecting Disk Drives .. 32
 Disk Drives for SAS Controllers... 32
 Disk Drives for SATA Controllers... 32
 Disk Drives for SCSI Controllers.. 32
Selecting Cables... 33
 SAS Cables.. 33
 SATA Cables.. 34
 SCSI Cables .. 35
Installation Options .. 35
 Basic Installation Steps... 35
 Installing with an Operating System... 35
 Installing on an Existing Operating System.. 36

Installing the Controller and Disk Drives

Before You Begin... 38
Installing the Controller ... 38
Connecting Disk Drives to SAS RAID Controllers .. 39
 Connecting Directly to the Controller... 39
 Connecting to a System Backplane.. 40
Connecting Disk Drives to SATA RAID Controllers.. 41
Connecting Disk Drives to SCSI RAID Controllers... 41
Connecting External Devices.. 42
 Next Steps... 42
Monitoring Disk Drives with Adaptec Storage Manager................................. 42

Creating a Bootable Array

Setting the Boot Controller .. 44
Creating an Array.. 44
 Creating an Array with the ACU ... 44
 Creating an Array with Adaptec Storage Manager................................... 46
Making Your Array Bootable .. 47

Installing the Driver and an Operating System

Before You Begin... 49
Creating a Driver Disk ... 49
Installing with Windows... 50
Installing with Red Hat Linux.. 50
Installing with SUSE Linux... 51
Installing with NetWare... 51
Installing with OpenServer.. 52
Installing with Solaris... 52
Installing with UnixWare ... 53
Installing with VMware ... 53
Installing with FreeBSD ... 54

Installing the Driver on an Existing Operating System

Before You Begin ... 56
Creating a Driver Disk ... 56
Installing on Windows ... 57
Installing on Red Hat or SUSE Linux ... 57
Installing on NetWare ... 57
Installing on OpenServer ... 58
Installing on Solaris ... 58
Installing on UnixWare ... 59
Installing on VMware ... 59
Installing on FreeBSD ... 60

Managing Your Storage Space

About Adaptec Storage Manager .. 62
Installing Adaptec Storage Manager ... 62
About the Adaptec RAID Controller Configuration Utility 62
About the Adaptec RAID Configuration Utility ... 63
About the Adaptec Flash Utility ... 63
Which Utility Should I Use? ... 63

Solving Problems

Troubleshooting Checklist ... 65
Silencing the Alarm ... 65
Recovering from a Disk Drive Failure ... 65
Failed Disk Drive Protected by a Hot Spare .. 66
Failed Disk Drive Not Protected by a Hot Spare 66
Failure in Multiple Arrays Simultaneously ... 66
Disk Drive Failure in a RAID 0 Array ... 66
Multiple Failures in the Same Array ... 67
Resetting the Controller ... 67

Introduction to Serial Attached SCSI

Terminology Used in This Chapter .. 69
What is SAS? .. 69
How Do SAS Devices Communicate? ... 70
What’s a Phy? .. 70
What’s a SAS Port? .. 71
What’s a SAS Address? ... 71
What’s a SAS Connector? .. 71
What do SAS Cables Look Like? ... 71
How are Disk Drives Identified in SAS? .. 72
What are the SAS Connection Options? .. 72
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Direct-attach Connections............72</td>
</tr>
<tr>
<td>Backplane Connections................72</td>
</tr>
<tr>
<td>SAS Expander Connections.............73</td>
</tr>
<tr>
<td>How is SAS Different from Parallel SCSI?....74</td>
</tr>
</tbody>
</table>

Understanding RAID
- Understanding Drive Segments.............................76
- Non-redundant Arrays (RAID 0)..............................76
- RAID 1 Arrays..77
- RAID 1 Enhanced Arrays.................................77
- RAID 10 Arrays...78
- RAID 5 Arrays...79
- RAID 5EE Arrays..80
- RAID 50 Arrays...81
- RAID 6 Arrays...82
- RAID 60 Arrays...82
- Selecting the Best RAID Level..........................83

Using the Adaptec RAID Configuration Utility
- Introduction to the ARC Utility..........................85
- Running the ARC Utility.......................................85
- Navigating the ARC Utility...................................85
- Using the ACU to Create and Manage Arrays..........85
 - Creating a New Array....................................85
 - Managing Existing Arrays................................86
- Initializing Disk Drives.....................................86
- Rescanning Disk Drives.....................................86
- Secure Erasing Disk Drives...............................87
- Using the -Select Utility to Modify Controller Settings................87
 - Opening a -Select Utility................................87
 - Applying Changes and Exiting.........................87
 - Modifying Your Controller’s Configuration........88
 - General Controller Settings...........................88
 - SAS-specific Controller Settings.....................89
 - SATA-specific Controller Settings...................89
 - SCSI-specific Controller Settings...................90
- Formatting and Verifying Disk Drives...............91
- Locating Disk Drives.......................................91
- Identifying Disk Drives....................................91
- Viewing the Event Log.....................................92

Using the Array Configuration Utility for DOS
- Getting Started...94
- Working in the ACU Using Menus......................94
- Running the ACU Using Scripts........................95
About This Guide

In this chapter...

What You Need to Know Before You Begin... 12
Terminology Used in this Guide.. 12
How to Find More Information .. 12

This Installation and User’s Guide explains how to install your Adaptec® RAID controller. It also describes the utilities included in your controller kit, and provides a basic overview of Serial Attached SCSI (SAS) and Redundant Array of Independent Disk (RAID) technology.

These RAID controller models are described in this Guide:

<table>
<thead>
<tr>
<th>SAS Controllers</th>
<th>SATA Controllers</th>
<th>SCSI Controllers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptec 3085</td>
<td>Adaptec 2420SA</td>
<td>Adaptec 2130SLP</td>
</tr>
<tr>
<td>Adaptec 3405</td>
<td>Adaptec 2820SA</td>
<td>Adaptec 2230SLP</td>
</tr>
<tr>
<td>Adaptec 3805</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptec 31205</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptec 31605</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptec 4000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptec 4800SAS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adaptec 4805SAS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
What You Need to Know Before You Begin

You should be familiar with computer hardware, data storage, RAID technology, and the input/output (I/O) technology—Small Computer System Interface (SCSI), SAS, or Serial ATA (SATA)—used by your controller. (For an introduction to SAS, see page 68.)

You should also be familiar with Direct-Attached Storage (DAS) or Network-Attached Storage (NAS)—whichever is appropriate for your storage space—and Storage Area Network (SAN) concepts and technology.

Note: Because this Guide covers multiple Adaptec RAID products, some of the features and functions described may not be available for your controller. For more information, see About Your RAID Controller on page 15.

Terminology Used in this Guide

Because you can use your Adaptec RAID controller to manage data storage in a variety of configurations from DAS to NAS to SAN, the generic term “storage space” is used to refer to controller(s) and disk drives being managed with Adaptec Storage Manager™ or the other utilities described in this Guide.

Many of the terms and concepts referred to in this Guide are known to computer users by multiple names. This Guide uses these terms:

- Controller (also known as adapter, board, or card)
- Disk drive (also known as hard disk, hard drive, or hard disk drive)
- Enclosure (also known as a RAID enclosure, storage enclosure, or JBOD enclosure)
- Array (also known as a container or logical drive)

Note: In DAS environments, Adaptec Storage Manager refers to arrays as logical drives. Why? Your RAID controller creates arrays, which your operating system (and Adaptec Storage Manager) recognizes as logical drives.

In NAS environments, Adaptec Storage Manager displays both arrays and logical drives. For more information, refer to the Adaptec Storage Manager User’s Guide for Internal RAID Storage on the Adaptec Storage Manager Installation CD.

How to Find More Information

You can find more information about your Adaptec RAID controller and the software and utilities included with it by referring to these documents:

- **Readme.txt**—Includes updated product information and known issues; located on the RAID Installation CD.
- **Adaptec Storage Manager User’s Guide for Internal RAID Storage**—Describes how to install and use the Adaptec Storage Manager software (see page 62); located on the Adaptec Storage Manager Installation CD.
- **Adaptec Storage Manager online Help**—Describes how to use the Adaptec Storage Manager software; accessible from the main window of Adaptec Storage Manager.
- **Command Line Utility for Internal RAID Storage User’s Guide**—Describes how to use the Adaptec RAID Controller Configuration (ARCCONF) command line utility (see page 62) to perform basic array and configuration management functions; located on the Adaptec Storage Manager Installation CD.
Kit Contents and System Requirements

In this chapter...

Kit Contents.. 14
System Requirements...14

This chapter lists the contents of your Adaptec RAID controller kit and the system requirements that must be met for you to successfully install and use your controller.
Chapter 2: Kit Contents and System Requirements

Kit Contents

- Adaptec RAID controller
- RAID Installation CD (bootable), including controller drivers, and this Guide
- Adaptec Storage Manager Installation CD (not bootable), including user guides for Adaptec Storage Manager and the ARCCONF command line utility
- Cables (Not all kits contain cables. If your kit does, the type and quantity vary—for cable information about your controller, visit the Adaptec Web site at www.adaptec.com.)
- (Selected models only) Low-profile bracket
- Adaptec SAS, SATA, and SCSI RAID Controllers Quick Start Guide

System Requirements

- PC-compatible computer with Intel Pentium, or equivalent, processor
- Motherboard with these features:
 - Compliant with PCI Local Bus Specification, Revision 2.2 or later
 - Support for multifunction devices where one of the devices is a PCI bridge
 - Large memory-mapped address ranges
- One of these operating systems:
 - Red Hat® Linux 3.0, 4.0
 - SUSE Linux ES 9.0, 10.0
- Note: For the latest on Adaptec's support of Linux, or to download driver sources, visit the Support area of the Adaptec Web site at www.adaptec.com.
 - Novell® NetWare® 6.5
 - SCO® OpenServer® 6.0
 - UnixWare® 7.1.4
 - Sun® Solaris™ 10
 - VMware ESX Server 3.0 (driver support only; storage management must be done through the ARC utility—see page 84)
 - FreeBSD 5.4, 6.0 (driver support only; storage management must be done through the ARC utility—see page 84)

Note: For up-to-date operating system version support, visit the Adaptec Web Site at www.adaptec.com. From the main menu select Support>Knowledgebase>Find Answers. Select your controller type and OS support to generate a list of supported operating systems.

- 128 MB (or more) of RAM
- Available compatible PCI/PCI-X/PCIe slot (depending on your controller model—see the descriptions starting on page 15)
- 20 MB of free disk drive space
- 16-bit SVGA color monitor with a resolution of at least 800 x 600
- CD drive
This chapter provides an overview of standard Adaptec RAID controller features, and describes the unique features of your controller. It also explains how to upgrade your controller with enhanced features.
Chapter 3: About Your RAID Controller

Standard RAID Controller Features

- Flash ROM for updates to controller firmware, BIOS, and the Adaptec RAID Configuration utility
- Disk drive hot-swapping
- Event logging and broadcasting including email and SNMP messages
- Multiple options for creating and managing RAID arrays—A full software application (Adaptec Storage Manager), a BIOS-based utility, a command line utility, and a DOS utility. See Managing Your Storage Space on page 61 for more information.
- (SAS and SATA RAID controllers only) Native command queuing (NCQ), which lets disk drives arrange commands into the most efficient order for optimum performance
- (SATA and SCSI RAID controllers only) Support for disk drive enclosures with SAF-TE enclosure management hardware. Tagged Command Queuing (TCQ), which allows disk drives to arrange commands into the most efficient order for optimum performance.
- (SAS RAID controllers only) Support for disk drive enclosures with SES2 enclosure management hardware
- Some RAID controllers support adding a battery backup module (see page 17).

Array-level Features

Note: For more information, refer to the Adaptec Storage Manager User’s Guide for Internal RAID Storage or online Help.

- Support for RAID 0, RAID 1, RAID 5, RAID 10, RAID 50, simple volumes, and spanned volumes
- Support for hot spares (global and dedicated)
- Support for automatic failover, so arrays are automatically rebuilt when a failed disk drive is replaced (applies to redundant arrays in SES2- or SAF-TE-enabled disk drive enclosures only)
- Optimized disk utilization, which ensures that the full capacity of all disk drives can be used, even if the disk drives vary in size
- Online capacity expansion, so you can increase the capacity of an array without recreating it
- Support for array migration from one RAID level to another

Advanced Data Protection Suite

- **Copyback Hot Spare**—You can use this feature to move data from a hot spare back to its original location after a failed disk drive is replaced.
- **Striped Mirror (RAID 1E)**—A RAID 1 Enhanced array is similar to a RAID 1 array except that data is both mirrored and striped, and more disk drives can be included.
- **Hot Space (RAID 5EE)**—A RAID 5EE array is similar to a RAID 5 array except that it includes a distributed spare and must be built from a minimum of four disk drives.
- **Dual Drive Failure Protection (RAID 6)**—A RAID 6 array is similar to a RAID 5 array except that it includes two independent sets of parity data instead of one.

1 The Adaptec 2420SA RAID controller does not support RAID 50.
● Dual Drive Failure Protection (RAID 60)—A RAID 60 array is similar to a RAID 50 array except that it includes four independent sets of parity data instead of two.

Adding Enhanced Features

As your storage needs change, you can enhance data protection and improve performance by upgrading your Adaptec controller with extra features.

Currently, Adaptec offers the snapshot function as an upgrade feature which can be activated with a feature key (sold separately). A snapshot is a frozen image of a logical drive at a particular point in time. You can use this feature to back up your data to tape, clone a disk drive, or copy the data to multiple servers.

Note: Snapshots are supported by Windows and Linux operating systems only.

To purchase a feature key, contact your Adaptec Reseller or refer to the Adaptec Web site at www.adaptec.com. To unlock the enhanced features with a feature key, see the following section.

Using a Feature Key to Unlock Enhanced Features

When you receive a feature key, use Adaptec Storage Manager to unlock the new features. For step-by-step instructions, follow the instructions in the online Help or the Adaptec Storage Manager User’s Guide for Internal RAID Storage on the Adaptec Storage Manager Installation CD.

Adding a Battery Backup Module

This table shows the battery model supported by your Adaptec RAID controller.

<table>
<thead>
<tr>
<th>RAID Controller</th>
<th>Battery Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptec 3085/Adaptec 3405/</td>
<td>Adaptec Battery Module 800</td>
</tr>
<tr>
<td>Adaptec 3805/Adaptec 31205/</td>
<td></td>
</tr>
<tr>
<td>Adaptec 31605</td>
<td></td>
</tr>
<tr>
<td>Adaptec 4800SAS / Adaptec 4805SAS</td>
<td>Adaptec Battery Module 600</td>
</tr>
<tr>
<td>Adaptec 2420SA / Adaptec 2820SA</td>
<td>Adaptec Battery Module 500</td>
</tr>
<tr>
<td>Adaptec 2130SLP / Adaptec 2230SLP</td>
<td>Adaptec Battery Module 400</td>
</tr>
</tbody>
</table>

To purchase a battery backup module, refer to the Adaptec Web site at www.adaptec.com.

Upgrading the Controller Firmware

To upgrade the firmware on your Adaptec RAID controller, follow the instructions in Using the Adaptec Flash Utility on page 104. You can also use the Adaptec Storage Manager to upgrade your controller firmware, refer to the Adaptec Storage Manager User’s Guide for Internal RAID Storage.
About the Adaptec 3085

The Adaptec 3085 is a SAS RAID controller with these features:

- **Form Factor**: Low-profile MD2
- **Bus compatibility**: PCIe
- **PCIe bus width**: x8
- **PCIe bus speed**: 2.5 Gb/s
- **PHYs**: 8
- **Standard cache**: 256 MB DDR2
- **Connectors, external**: Two SAS x4 (SFF-8088)
- **RAID levels**: 0, 1, 1E, 10, 5, 5EE, 50, 6, 60, JBOD
- **Simple Volume**: Yes
- **Disk Drives**: SATA, SATA II, SAS
- **Maximum number of disk drives**: 8 (or up to 100 with expanders)
- **Hot spares**: Yes
- **Enclosure Support**: I2C and SGPIO (Serial General Purpose Output)
- **Automatic Failover**: Yes
- **Onboard speaker**: Yes
- **Audible alarm**: Yes
- **Battery Backup Module**: Adaptec Battery Module 800 (sold separately—see page 17)
About the Adaptec 3405

The Adaptec 3405 is a SAS RAID controller with these features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factor</td>
<td>Low-profile MD2</td>
</tr>
<tr>
<td>Bus compatibility</td>
<td>PCIe</td>
</tr>
<tr>
<td>PCIe bus width</td>
<td>x4</td>
</tr>
<tr>
<td>PCIe bus speed</td>
<td>2.5 Gb/s</td>
</tr>
<tr>
<td>PHYs</td>
<td>4</td>
</tr>
<tr>
<td>Standard cache</td>
<td>128 MB DDR2</td>
</tr>
<tr>
<td>Connectors, internal</td>
<td>One SAS x4 (SFF-8087)</td>
</tr>
<tr>
<td>RAID levels</td>
<td>0, 1, 1E, 10, 5, 5EE, 50, 60, JBOD</td>
</tr>
<tr>
<td>Simple Volume</td>
<td>Yes</td>
</tr>
<tr>
<td>Disk Drives</td>
<td>SATA, SATA II, SAS</td>
</tr>
<tr>
<td>Maximum number of disk drives</td>
<td>4 (or up to 100 with expanders)</td>
</tr>
<tr>
<td>Hot spares</td>
<td>Yes</td>
</tr>
<tr>
<td>Enclosure Support</td>
<td>I2C and SGPIO</td>
</tr>
<tr>
<td>Automatic Failover</td>
<td>Yes</td>
</tr>
<tr>
<td>Onboard speaker</td>
<td>Yes</td>
</tr>
<tr>
<td>Audible alarm</td>
<td>Yes</td>
</tr>
<tr>
<td>Battery Backup Module</td>
<td>Adaptec Battery Module 800 (sold separately—see page 17)</td>
</tr>
</tbody>
</table>
Chapter 3: About Your RAID Controller

About the Adaptec 3805

The Adaptec 3805 is a SAS RAID controller with these features:

- **Form Factor**: Low-profile MD2
- **Bus compatibility**: PCIe
- **PCIe bus width**: x4
- **PCIe bus speed**: 2.5 Gb/s
- **PHYs**: 8
- **Standard cache**: 128 MB DDR2
- **Connectors, internal**: Two SAS x4 (SFF-8087)
- **RAID levels**: 0, 1, 1E, 10, 5, 5E, 50, 6, 60, JBOD
- **Simple Volume**: Yes
- **Disk Drives**: SATA, SATA II, SAS
- **Maximum number of disk drives**: 8 (or up to 100 with expanders)
- **Hot spares**: Yes
- **Enclosure Support**: I2C and SGPIO
- **Automatic Failover**: Yes
- **Onboard speaker**: No
- **Audible alarm**: Yes
- **Battery Backup Module**: Adaptec Battery Module 800 (sold separately—see page 17)
Chapter 3: About Your RAID Controller

About the Adaptec 31205

The Adaptec 31205 is a SAS RAID controller with these features:

- **Form Factor**: Half-size
- **Bus compatibility**: PCIe
- **PCIe bus width**: x8
- **PCIe bus speed**: 2.5 Gb/s
- **PHYs**: 12
- **Standard cache**: 256 MB DDR2
- **Connectors, internal**: Three SAS x4 (SFF-8087)
- **RAID levels**: 0, 1, 1E, 10, 5, 5EE, 50, 6, 60, JBOD
- **Simple Volume**: Yes
- **Disk Drives**: SATA, SATA II, SAS
- **Maximum number of disk drives**: 12 (or up to 100 with expanders)
- **Hot spares**: Yes
- **Enclosure Support**: I2C and SGPIO
- **Automatic Failover**: Yes
- **Onboard speaker**: Yes
- **Audible alarm**: Yes
- **Battery Backup Module**: Adaptec Battery Module 800 (sold separately—see page 17)
About the Adaptec 31605

The Adaptec 31605 is a SAS RAID controller with these features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factor</td>
<td>Half-size</td>
</tr>
<tr>
<td>Bus compatibility</td>
<td>PCIe</td>
</tr>
<tr>
<td>PCIe bus width</td>
<td>x8</td>
</tr>
<tr>
<td>PCIe bus speed</td>
<td>2.5 Gb/s</td>
</tr>
<tr>
<td>PHYs</td>
<td>16</td>
</tr>
<tr>
<td>Standard cache</td>
<td>256 MB DDR2</td>
</tr>
<tr>
<td>Connectors, internal</td>
<td>Four SAS x4 (SFF-8087)</td>
</tr>
<tr>
<td>RAID levels</td>
<td>0, 1, 1E, 10, 5, 5EE, 50, 6, 60, JBOD</td>
</tr>
<tr>
<td>Simple Volume</td>
<td>Yes</td>
</tr>
<tr>
<td>Disk Drives</td>
<td>SATA, SATA II, SAS</td>
</tr>
<tr>
<td>Maximum number of disk drives</td>
<td>16 (or up to 100 with expanders)</td>
</tr>
<tr>
<td>Hot spares</td>
<td>Yes</td>
</tr>
<tr>
<td>Enclosure Support</td>
<td>I2C and SGPIO</td>
</tr>
<tr>
<td>Automatic Failover</td>
<td>Yes</td>
</tr>
<tr>
<td>Onboard speaker</td>
<td>Yes</td>
</tr>
<tr>
<td>Audible alarm</td>
<td>Yes</td>
</tr>
<tr>
<td>Battery Backup Module</td>
<td>Adaptec Battery Module 800 (sold separately—see page 17)</td>
</tr>
</tbody>
</table>

![Diagram of Adaptec 31605](image)
About the Adaptec 4000

The Adaptec 4000 is a low-profile SAS Zero Channel RAID controller with these features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factor</td>
<td>Low-profile MD2</td>
</tr>
<tr>
<td>Bus compatibility</td>
<td>PCI-X</td>
</tr>
<tr>
<td>PCI-X bus width</td>
<td>64-bit</td>
</tr>
<tr>
<td>PCI-X bus speed</td>
<td>133MHz</td>
</tr>
<tr>
<td>Standard cache</td>
<td>128 MB DDR2</td>
</tr>
<tr>
<td>Connectors</td>
<td>N/A</td>
</tr>
<tr>
<td>RAID levels</td>
<td>0, 1, 1E, 10, 5, 5EE, 50,6, 60, JBOD</td>
</tr>
<tr>
<td>Simple Volume</td>
<td>Yes</td>
</tr>
<tr>
<td>Disk Drives</td>
<td>SATA, SATA II, SAS</td>
</tr>
<tr>
<td>Maximum number of disk drives</td>
<td>24</td>
</tr>
<tr>
<td>Hot spares</td>
<td>Yes</td>
</tr>
<tr>
<td>Enclosure Support</td>
<td>SAF-TE, SES2</td>
</tr>
<tr>
<td>Automatic Failover</td>
<td>Yes</td>
</tr>
<tr>
<td>Onboard speaker</td>
<td>Yes</td>
</tr>
<tr>
<td>Audible alarm</td>
<td>No</td>
</tr>
<tr>
<td>Battery Backup Module</td>
<td>No</td>
</tr>
</tbody>
</table>
About the Adaptec 4800SAS

The Adaptec 4800SAS is a SAS RAID controller with these features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form factor</td>
<td>3/4 length</td>
</tr>
<tr>
<td>Bus compatibility</td>
<td>PCI-X, 3.3 V</td>
</tr>
<tr>
<td>PCI-X bus width</td>
<td>64-bit</td>
</tr>
<tr>
<td>PCI-X bus speed</td>
<td>133 MHz</td>
</tr>
<tr>
<td>PHYs</td>
<td>8</td>
</tr>
<tr>
<td>Standard cache</td>
<td>128 MB DDR2(^1)</td>
</tr>
<tr>
<td>Connectors</td>
<td>One external 4x multilane (SFF-8470), Two internal 4x multilane (SFF-8484)</td>
</tr>
<tr>
<td>RAID levels</td>
<td>0, 1, 1E, 10, 5, 5E, 5E, 60, JBOD</td>
</tr>
<tr>
<td>Simple Volume</td>
<td>Yes</td>
</tr>
<tr>
<td>Disk Drives</td>
<td>SATA, SATA II, SAS</td>
</tr>
<tr>
<td>Maximum number of disk drives</td>
<td>8 (or up to 100 with expanders)</td>
</tr>
<tr>
<td>Hot spares</td>
<td>Yes</td>
</tr>
<tr>
<td>Enclosure support</td>
<td>SES2</td>
</tr>
<tr>
<td>Automatic Failover</td>
<td>Yes</td>
</tr>
<tr>
<td>Onboard speaker</td>
<td>Yes with these specifications: 3.0 V, 90.0 mA. The internal speaker is not required, as the onboard speaker volume is appropriate for most environments.</td>
</tr>
<tr>
<td>Audible alarm</td>
<td>Yes</td>
</tr>
<tr>
<td>Battery backup module</td>
<td>Adaptec Battery Module 600 (sold separately—see page 17)</td>
</tr>
</tbody>
</table>

\(^1\) 256 MB also available
About the Adaptec 4805SAS

The Adaptec 4805SAS is a SAS RAID controller with these features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factor</td>
<td>3/4 length</td>
</tr>
<tr>
<td>Bus Compatibility</td>
<td>PCIe</td>
</tr>
<tr>
<td>PCIe bus width</td>
<td>x8</td>
</tr>
<tr>
<td>PCIe bus speed</td>
<td>2.5 Gb/s</td>
</tr>
<tr>
<td>PHYs</td>
<td>8</td>
</tr>
<tr>
<td>Standard cache</td>
<td>128 MB DDR2<sup>1</sup></td>
</tr>
<tr>
<td>Connectors</td>
<td>One external 4x multilane (SFF-8470), Two internal 4x multilane (SFF-8484)</td>
</tr>
<tr>
<td>RAID levels</td>
<td>0, 1, 1E, 10, 5, 5EE, 50, 60, JBOD</td>
</tr>
<tr>
<td>Simple Volume</td>
<td>Yes</td>
</tr>
<tr>
<td>Disk Drives</td>
<td>SATA, SATA II, SAS</td>
</tr>
<tr>
<td>Maximum number of disk drives</td>
<td>8 (or up to 100 with expanders)</td>
</tr>
<tr>
<td>Hot spares</td>
<td>Yes</td>
</tr>
<tr>
<td>Enclosure support</td>
<td>SES2</td>
</tr>
<tr>
<td>Automatic Failover</td>
<td>Yes</td>
</tr>
<tr>
<td>Onboard speaker</td>
<td>Yes with these specifications: 3.0 V, 90.0 mA. The internal speaker is not required, as the onboard speaker volume is appropriate for most environments.</td>
</tr>
<tr>
<td>Audible Alarm</td>
<td>Yes</td>
</tr>
<tr>
<td>Battery backup module</td>
<td>Adaptec Battery Module 600 (sold separately—see page 17)</td>
</tr>
</tbody>
</table>

¹ 256 MB also available
About the Adaptec 2420SA

The Adaptec 2420SA is a SATA II RAID controller with these features:

- **Form Factor:** Half-size
- **Bus compatibility:** PCI-X, 3.3 V
- **PCI-X bus width:** 64-bit
- **PCI-X bus speed:** 133 MHz
- **Standard cache:** 256 MB
- **Connectors:** 4x SATA connector
- **RAID levels:** 0, 1, 1E, 5, 5EE, 6, 10
- **Simple volume:** Yes
- **Disk drives:** Up to 4 Serial ATA/Serial ATA II disk drives, 48-bit LBA supports drives larger than 137GB
- **Maximum number of disk drives:** 4
- **Hot spares:** Yes
- **Automatic Failover:** Yes
- **Onboard speaker:** Yes
- **Audible Alarm:** Yes
- **Battery backup module:** Adaptec Battery Module 500 (sold separately—see page 17)

Note: A low-profile bracket is included with this controller. However, this controller may not fit in all low-profile systems.
About the Adaptec 2820SA

The Adaptec 2820SA is a SATA II RAID controller with these features:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Form Factor</td>
<td>Half-size</td>
</tr>
<tr>
<td>Bus compatibility</td>
<td>PCI-X, 3.3 V</td>
</tr>
<tr>
<td>PCI-X bus width</td>
<td>64-bit</td>
</tr>
<tr>
<td>PCI-X bus speed</td>
<td>133 MHz</td>
</tr>
<tr>
<td>Standard cache</td>
<td>256 MB</td>
</tr>
<tr>
<td>Connectors</td>
<td>8x SATA connector</td>
</tr>
<tr>
<td>RAID levels</td>
<td>0, 1, 1E, 5, 5EE, 6, 10, 50, 60</td>
</tr>
<tr>
<td>Simple volume</td>
<td>Yes</td>
</tr>
<tr>
<td>Disk drives</td>
<td>Up to 8 Serial ATA/Serial ATA II disk drives, 48-bit LBA supports drives larger than 137GB</td>
</tr>
<tr>
<td>Maximum number of disk drives</td>
<td>8</td>
</tr>
<tr>
<td>Hot spares</td>
<td>Yes</td>
</tr>
<tr>
<td>Automatic Failover</td>
<td>Yes</td>
</tr>
<tr>
<td>Onboard speaker</td>
<td>Yes</td>
</tr>
<tr>
<td>Audible Alarm</td>
<td>Yes</td>
</tr>
<tr>
<td>Battery backup module</td>
<td>Adaptec Battery Module 500 (sold separately—see page 17)</td>
</tr>
</tbody>
</table>

Note: A low-profile bracket is included with this controller. However, this controller may not fit in all low-profile systems.
About the Adaptec 2130SLP

The Adaptec 2130SLP is a low-profile SCSI controller with these features:

- **Form Factor**: Low-profile MD2
- **Bus compatibility**: PCI-X, 3.3 V
- **PCI-X bus width**: 64-bit
- **PCI-X bus speed**: 133 MHz
- **Standard cache**: 128 MByte embedded DDR memory (optional 256MB)
- **Connectors**:
 - Internal = One 68-pin high-density
 - External = One 68-pin VHDCI
- **RAID levels**: 0, 1, 1E, 5, 5EE, 6, 10, 50, 60
- **Simple volume**: Yes
- **Disk drives**: Up to 15 SCSI devices
- **Maximum number of disk drives**: 15
- **Hot spares**: Yes
- **Enclosure Support**: SAFTE
- **Automatic Failover**: Yes
- **Onboard speaker**: Yes
- **Audible Alarm**: Yes
- **Battery backup module**: Adaptec Battery Module 400 (sold separately—see page 17)
About the Adaptec 2230SLP

The Adaptec 2230SLP is a low-profile SCSI controller with these features:

- **Form Factor**: Low-profile MD2
- **Bus compatibility**: PCI-X, 3.3 V
- **PCI-X bus width**: 64-bit
- **PCI-X bus speed**: 133 MHz
- **Standard cache**: 128 MByte embedded DDR memory (optional 256MB)
- **Connectors**: Internal = Two 68-pin high-density, External = Two 68-pin VHDCI
- **RAID levels**: 0, 1, 1E, 5, 5EE, 6, 10, 50, 60
- **Simple volume**: Yes
- **Disk drives**: Up to 30 SCSI devices
- **Maximum number of disk drives**: 30
- **Hot spares**: Yes
- **Enclosure Support**: SAFTE
- **Automatic Failover**: Yes
- **Onboard speaker**: Yes
- **Audible Alarm**: Yes
- **Battery backup module**: Adaptec Battery Module 400 (sold separately—see page 17)
In this chapter...

Choosing a RAID Level ... 31
Selecting Disk Drives ... 32
Selecting Cables ... 33
Installation Options ... 35
Basic Installation Steps .. 35

This chapter provides the basic information you need to set up your disk drives and arrays the way you want them. It also describes the options you have for installing your Adaptec controller and disk drives, and creating arrays for data storage.

Note: Before you begin, familiarize yourself with your Adaptec controller’s physical features and the RAID levels that it supports (see About Your RAID Controller on page 15).
Choosing a RAID Level

This section provides a brief overview of the RAID levels supported by your Adaptec RAID controller, including the minimum and maximum number of disk drives required by each.

- **RAID 0 (Non-redundant Array)**—Stripes data across multiple disk drives. Improved performance but no redundancy (see page 76).

- **RAID 1 Array**—Created from two disk drives where one disk drive is a mirror of the other (the same data is stored on each disk drive). Redundancy, but reduced capacity (see page 77).

- **RAID 1E Array**—Similar to a RAID 1 array except that data is mirrored and striped, and more disk drives can be included (see page 77).

- **RAID 5 Array**—Stripes data for improved performance and uses parity data to provide redundancy (see page 79).

- **RAID 5EE Array**—Similar to a RAID 5 array, but includes a distributed spare and must include a minimum of four disk drives (see page 80).

- **RAID 10 Array**—Built from two or more equal-sized RAID 1 arrays, stripes and mirrors data across multiple disk drives. Redundancy and improved performance (see page 78).

- **RAID 50 Array**—Built from multiple disk drives configured as two or more RAID 5 arrays, stripes stored data and parity data across all disk drives (see page 81).

- **RAID 6 Array**—Similar to a RAID 5 array except that it includes two independent sets of parity data instead of one (see page 82).

- **RAID 60 Array**—Similar to a RAID 50 array except that it includes four independent sets of parity data instead of two (see page 82).

Use the table on page 83 to see how many disk drives you must connect to your RAID controller to support the RAID level you want.

1 The Adaptec 2420SA RAID controller does not support RAID 50.
Selecting Disk Drives

When selecting disk drives for your RAID array, ensure that all the disk drives have the same performance level. You can use different-sized disk drives in the array, but the array will be limited to the capacity of the smallest and slowest disk drive.

For more information, refer to the Adaptec Storage Manager User’s Guide for Internal RAID Storage or online Help.

Disk Drives for SAS Controllers

Your SAS controller supports both SAS and SATA disk drives. For cable information, see page 33.

Disk Drives for SATA Controllers

Your SATA controller supports SATA disk drives only. You need one SATA port for each disk drive you are connecting to your SATA controller.

Disk Drives for SCSI Controllers

Your SCSI controller supports Ultra320 SCSI disk drives. It also supports Ultra2 or higher SCSI disk drives and peripherals, but at performance levels less than Ultra320. Adaptec does not recommend using SCSI disk drives or peripherals older than Ultra2.

Note: High-voltage Differential (HVD) disk drives are not supported and will damage your controller.

If you are mixing single-ended (SE) disk drives with Low-voltage Differential (LVD) disk drives:

● Ensure proper termination by using a cable (like the one included in the kit) with a built-in multimode terminator and proper adapters.

● Disable termination on all the SE disk drives.

● Put LVD and SE disk drives on separate channels for the best performance.

Note: If you mix SE and Ultra320 disk drives on the same channel, the performance of the Ultra320 disk drives is reduced to SE levels.
Selecting Cables

This section describes the cable options and requirements for your Adaptec controller:

- For SAS cables, see this page.
- SATA cables, see page 34.
- SCSI cables, see page 35.

SAS Cables

You need one SAS cable for each disk drive you are connecting to your Adaptec SAS RAID controller.

Depending on your requirements, you can use any of these cables:

- **External cable (SFF-8470 to SFF-8470)**—Connects to an external SAS enclosure.
- **External mini-SAS (SFF-8088 to SFF-8470)**—Connects to an external SAS enclosure.
- **Internal fan-out cable (SFF-8484 to 4x SATA)**—Connects to four internal SATA disk drives. (SAS-to-SAS fan-out cables—not shown—are also available.)
- **Internal mini-SAS with power (SFF-8087 to SFF-8482)**—Connects to four SAS or SATA disk drives.
Cable connectors are keyed so that you can’t insert them incorrectly.

Adaptec recommends using only Adaptec SAS cables. For more information or to purchase cables, visit the Adaptec Web site at www.adaptec.com.

SATA Cables

You need one straight connector to straight connector SATA cable for each disk drive you are connecting to your Adaptec SATA RAID controller. SATA cables are included in the kit.
All SATA straight connector to straight connector cables have the same connectors, as shown in the following figure, and the connectors are keyed so that you can’t insert them incorrectly.

Adaptec recommends using only Adaptec SATA cables. For more information or to purchase cables, visit the Adaptec Web site at www.adaptec.com.

SCSI Cables

Depending on your requirements, you may need one or two internal cables. You may also need one external SCSI cable. Ensure that you have cables with the proper connectors for your RAID controller. One internal SCSI cable is included in the kit.

Adaptec recommends using only high-quality Ultra320-rated cables with multimode terminators for all disk drives that share a channel with Ultra320 disk drives. Avoid poor quality cables, as they may degrade reliability. Do not use cables not rated for Ultra320 operation.

Adaptec recommends using only Adaptec SCSI cables. For more information or to purchase cables, visit the Adaptec Web site at www.adaptec.com.

Installation Options

When you install your Adaptec controller, you can choose to create a bootable array and then install your operating system and the controller driver on that array.

Alternatively, you can complete a standard installation, where the controller driver is installed on an existing operating system.

Basic Installation Steps

This section describes the installation process. Follow the steps for the installation option you’ve chosen.

Installing with an Operating System

1. Install and connect your controller and internal disk drives (see page 37).

 If your controller has an external connector, you can connect external disk drives as well (or instead).

2. Set the boot controller (see page 44).

3. Create a bootable array (see page 44).
4 Install your operating system and the controller driver (see page 48.)

5 Install Adaptec Storage Manager and begin to manage your data storage (see page 61).

 Note: Currently, Adaptec Storage Manager is not supported on FreeBSD. To create and manage arrays, use the ARC utility. See page 63 for more information.

Installing on an Existing Operating System

1 Install and connect your controller and internal disk drives (see page 37).

 If your controller has an external connector, you can connect external disk drives as well (or instead).

2 Install the controller driver (see page 55).

3 Install Adaptec Storage Manager and begin to manage your data storage (see page 61).

 Note: Currently, Adaptec Storage Manager is not supported on FreeBSD. To create and manage arrays, use the ARC utility. See page 63 for more information.
This chapter explains how to install your Adaptec RAID controller, and how to install and connect internal and external disk drives.
Before You Begin

- Read Safety Information on page 129.
- Familiarize yourself with your Adaptec RAID controller’s physical features and the RAID levels that it supports (see page 15).
- Ensure you have the right quantity of disk drives for the RAID level you want to use for your arrays (see page 32).
- Ensure that you have the proper cables for your controller and disk drives (see page 33).
- If you are installing a low-profile RAID controller into a low-profile computer cabinet, replace the original full-height bracket with the low-profile bracket included in the kit.

Caution: Handle the controller by its bracket or edges only.

Installing the Controller

This section describes how to install your Adaptec RAID controller into your computer cabinet.

1. Turn off your computer and disconnect the power cord. Open the cabinet, following the manufacturer’s instructions.

2. Select an available PCI/PCIe/PCI-X expansion slot that’s compatible with your RAID controller and remove the slot cover, as shown at right. (PCI bus compatibility is marked to the controller figures in About Your RAID Controller on page 15.)

For the best performance, use the fastest available PCI slot that’s compatible with your RAID controller.

Caution: Touch a grounded metal object before handling the RAID controller.

3. As shown at right, insert the RAID controller into the PCI expansion slot and press down gently but firmly until it clicks into place. When installed properly, the RAID controller should appear level with the expansion slot.

4. Secure the bracket in the PCI/PCIe/PCI-X slot, using the retention device (for instance, a screw or lever) supplied with your computer.

5. Connect your computer’s disk activity LED cable to the LED connector on the controller (marked on the figures in About Your RAID Controller on page 15).

Ensure that the positive lead of the LED cable (usually a red wire or a wire marked with a red stripe) is attached to pin 1.

Note: Adaptec 4000 only—Controller installation is complete. If you are installing the controller driver and an operating system on a bootable array, continue with Creating a Bootable Array on page 43.

If you are completing a standard installation onto an existing operating system, continue with Installing the Driver on an Existing Operating System on page 55.
6 Optional—Connect your RAID controller’s I2C connector (not available on all models) to an I2C connector on an internal backplane or enclosure, using an I2C cable. For more connection details, see About Your RAID Controller on page 15.

7 Prepare and install your internal disk drives, following the instructions for your type of controller:

- For SAS RAID controllers, see page 39.
- For SATA RAID controllers, see page 41.
- For SCSI RAID controllers, see page 41.

If you are not installing internal disk drives, close your computer cabinet, reattach the power cord, then continue with Connecting External Devices on page 42.

Connecting Disk Drives to SAS RAID Controllers

You can connect SAS disk drives, SATA disk drives, or a combination of both to your SAS RAID controller. There are no jumpers or switches to set before installation.

If you plan to build a bootable array using internal disk drives, ensure you install at least the minimum number disk drives required to support the RAID level you want. See page 31 for more information.

Note: Although you can connect both SAS and SATA disk drives to your SAS controller, Adaptec recommends that you *not* combine SAS and SATA disk drives within the same array or logical drive. See page 69 for more information.

You have two connection options:

- To connect directly to the controller, see the following section.
- To connect to a backplane, see page 40.

Connecting Directly to the Controller

In a direct-attach connection, SAS or SATA disk drives are connected directly to a SAS card with SAS cables. The number of direct-attached disk drives is limited to four per internal SAS connector. (For more information about direct-attach connections, see page 72.)

1 Install your internal SAS or SATA disk drives, following the instructions in your system’s documentation.
2 Use internal SAS or mini-SAS cables to attach the disk drives to the controller.

3 When all internal disk drives have been installed and attached to the controller, close your computer cabinet, reattach the power cord, then continue with Connecting External Devices on page 42.

Connecting to a System Backplane

In a backplane connection, disk drives and SAS cards are attached to and communicate with each other through a system backplane.

The number of disk drives is limited to the number of slots available on the backplane. Some backplanes have embedded SAS expanders and can support up to 128 end devices. (For more information about backplane and expander connections, see page 72.)

1 Connect one or more internal SAS or SATA disk drives to the backplane. (Refer to your system's documentation for more information.)

2 Use an internal SAS cable to connect the controller to the backplane.
When all internal disk drives have been installed and connected, close your computer cabinet, reattach the power cord, then continue with Connecting External Devices on page 42.

Connecting Disk Drives to SATA RAID Controllers

1. Install your SATA disk drives, following the instructions in your system's documentation. There are no jumpers or switches to set on the SATA controller or disk drives.

2. Connect each disk drive to a SATA port on the controller using a recommended SATA cable. For cable information, see About Your RAID Controller on page 15.

3. When all internal disk drives have been installed and connected, close your computer cabinet, and reattach the power cord.

Connect by either setting the boot controller (see page 43) or by installing the controller driver on an existing operating system (see page 55), depending on the type of installation you are completing.

Connecting Disk Drives to SCSI RAID Controllers

1. For each controller channel, set the SCSI ID of each disk drive to a unique number between 0 and 15.

The controller is set to ID 7 by default. Although not recommended, you can change the controller ID by using the ARC utility (see page 84).

Note: Do not change the controller ID unless absolutely necessary.
2 Install a terminator (or enable termination) on the disk drive at the end of each cable, or the end of the cable itself.

Remove any terminators (or disable termination) on disk drives between the ends of each cable.

Install your SCSI disk drives, following the instructions in your system’s documentation.

3 If space inside your computer cabinet is limited, connect your disk drives to the SCSI cable before installing them. (For installation instructions, refer to your computer documentation.)

⚠️ **Caution:** To avoid causing unstable operation, do not attach a cable to the controller unless the other end of the cable is attached to at least one disk drive.

Alternatively, install your disk drives, then connect them to the controller.

4 When all internal disk drives have been installed and connected, close your computer cabinet, reattach the power cord, then continue with the following section.

Connecting External Devices

Note: If you are not connecting any external devices, see the following section, *Next Steps*.

1 *(SCSI controllers only)* Ensure that SCSI IDs and termination are set before completing the connections to external disk drives or devices. See page 41.

2 Use high-quality cables to connect your controller to your external device(s), such as disk drives or disk drive enclosures.

Adaptec recommends using only Adaptec cables. For more information or to purchase cables, visit the Adaptec Web site at www.adaptec.com.

Next Steps

If you are installing the controller driver and an operating system onto a bootable array, continue with *Creating a Bootable Array on page 43*.

If you are completing a standard installation onto an existing operating system, continue with *Installing the Driver on an Existing Operating System on page 55*.

Monitoring Disk Drives with Adaptec Storage Manager

Adaptec Storage Manager allows you to monitor the status of your SAS, SATA, or SCSI disk drives. Within Adaptec Storage Manager, you can select a disk drive object and a command will be sent to the backplane (for internal disk drives) or enclosure (for external disk drives). The LED associated with that disk drive will flash. The following table describes the LED flash states. For more information about backplanes, see *Backplane Connections on page 72*. For more information about monitoring capabilities, refer to the Adaptec Storage Manager Help.

<table>
<thead>
<tr>
<th>Controller Device State</th>
<th>Slot State</th>
<th>LED Flash State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failed</td>
<td>Device is faulty</td>
<td>On</td>
</tr>
<tr>
<td>Rebuilding</td>
<td>Device is rebuilding</td>
<td>Slow flash</td>
</tr>
<tr>
<td>Blink</td>
<td>Identify the device</td>
<td>Fast flash</td>
</tr>
<tr>
<td>Other</td>
<td>No error</td>
<td>Off</td>
</tr>
</tbody>
</table>

Creating a Bootable Array

In this chapter...

- Setting the Boot Controller ... 44
- Creating an Array ... 44
- Making Your Array Bootable ... 47

This chapter explains how to set your Adaptec controller to be the boot controller, and how to create a bootable array.

Note: If you are completing a standard installation onto an existing operating system, you don’t have to complete this task. Skip to *Installing the Driver on an Existing Operating System* on page 55.
Chapter 6: Creating a Bootable Array

Setting the Boot Controller

Note: If your system won’t contain more than one bootable controller, skip to the next section, *Creating an Array.*

Your Adaptec RAID controller supports bootable disk drives and bootable arrays. To enable your system to boot from either a disk drive or an array connected to your controller:

1. Enter the system setup.
2. Navigate to the drive boot sequence.
3. Move the boot controller to the top of the list.

For more information, refer to your computer documentation.

Creating an Array

This section explains how to create an array.

A RAID 5 array is created in the examples shown in this section because RAID 5 provides the most security and best performance with a minimum of three disk drives. However, you can choose to create an array with a different RAID level; you can also change array level later, after the operating system is installed.

You can create an array using any of these tools:

- **Array Configuration Utility (ACU)**—BIOS-based menus and keyboard navigation (see the following section).
- **Adaptec Storage Manager**—Graphical software application (running from a bootable RAID installation CD) that you can navigate with your mouse (see page 62).
- **ARCCONF**—Command line utility, refer to the *Command Line Interface (CLI) for Internal RAID Storage User’s Guide.*

You can use either tool, but the ACU utility is the quicker and easier tool for this task.

Note: Adaptec recommends that you *not* combine SAS and SATA disk drives within the same array. Adaptec Storage Manager generates a warning if you try to create a logical drive using a combination of SAS and SATA disk drives. See page 69 for more information.

Creating an Array with the ACU

The ACU is menu-based and instructions for completing tasks appear on-screen. Menus can be navigated using the arrows, Enter, Esc, and other keys on your keyboard.

To create a RAID 5 array:

1. Power on your computer. When prompted, press Ctrl+A to enter the ARC utility.

 Note: During boot up, if your system has insufficient memory the following message will display. “Adaptec RAID Configuration Utility will load after, system initialization. Please wait... Or press <Enter> Key to attempt loading the utility forcibly [Generally, not recommended]”

2. If you have more than one controller of the same model or family in your computer, select your controller, then press Enter.

3. Select Array Configuration Utility, then press Enter.
4 Select **Initialize Drives**, then press **Enter**.

5 Select at least three disk drives for the array, press **Insert** for each selected disk drive, then press **Enter**.

 Caution: During initialization, all data is deleted from the disk. Before continuing, back up any data you want to keep.

6 Press **Y**, then press **Enter**.

 The selected disk drives are initialized, then the ACU screen appears.

7 Select **Create Array**, then press **Enter**.

8 Select the disk drives that were just initialized, press **Insert** for each selected disk drive, then press **Enter**.

9 When the Array Properties screen opens, follow the instructions in the following table.

<table>
<thead>
<tr>
<th>Property Line</th>
<th>Entry or Selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array Type</td>
<td>Select RAID 5, then press Enter.</td>
</tr>
<tr>
<td>Array Label</td>
<td>Type a name, then press Enter.</td>
</tr>
<tr>
<td>Array Size</td>
<td>Press Enter, then press Enter again to use the default granularity of GB.</td>
</tr>
<tr>
<td>Stripe Size</td>
<td>Press Enter to use the default (256 KB).</td>
</tr>
<tr>
<td>Read Caching</td>
<td>Press Enter to use the default (Yes).</td>
</tr>
<tr>
<td>Write Caching</td>
<td>Press Enter to use the default (Enable always).</td>
</tr>
<tr>
<td>Create RAID via</td>
<td>Press Enter to use the default (Build/Verify).</td>
</tr>
<tr>
<td>[Done]</td>
<td>Press Enter.</td>
</tr>
</tbody>
</table>

10 When a cache warning message displays, type **Y**.

11 Once the array is created, a message displays telling you that the array can now be used. Press any key to return to the ACU Menu.

 You can start using the array immediately. However, performance is reduced until the build process is complete.

12 Press **Esc** until the Exit utility window appears.

13 Select **Yes**, then press **Enter**.

 The computer restarts.

14 Continue with *Making Your Array Bootable on page 47*.
Creating an Array with Adaptec Storage Manager

This section describes how to use the Adaptec Storage Manager configuration wizard to build a RAID 5 array.

Note: You will need the Adaptec Storage Manager Installation CD to complete this task.

To create a RAID 5 array:

1. Insert the Adaptec Storage Manager Installation CD into your CD drive, then restart your computer.
2. When prompted, select the language you want, then press Enter.
3. Review the license information, then press Enter.
 The main menu opens.
4. Click Launch Configuration Utility.
 Adaptec Storage Manager opens.
5. Click Create.
 The Configuration wizard opens.
6. Select Express configuration..., then click Next.
7 Review the information that is displayed.

Note: In DAS environments, Adaptec Storage Manager uses the term *logical drives* when referring to *arrays* (see page 12).

In this example, Adaptec Storage Manager has used thirteen equal-sized disk drives to automatically create one logical drive with RAID 5 and a hot spare.

To exclude specific disk drives from the logical drive, specify a size for the logical drive, or to make other changes to the configuration, click *Modify logical devices*.

8 Click *Apply*, then click *Yes* when prompted to confirm applying your new configuration.

Adaptec Storage Manager builds the logical drive.

The configuration is saved on the Adaptec controller (as an “array”, see page 12) and on the physical disk drives.

9 Partition and format your logical drive.

The logical drive you created appears as a physical disk drive on your operating system. You must partition and format these logical drives before you can use them to store data.

10 Close all windows, then click *Reboot* to restart your system.

11 Remove the Adaptec Storage Manager Installation CD.

For information on installing and using Adaptec Storage Manager as a full software application, refer to the *Adaptec Storage Manager User’s Guide for Internal RAID Storage* or online Help.

12 Continue with the following section.

Making Your Array Bootable

Use the ACU to make the array bootable (see *Creating Bootable Arrays* on page 86).

Then continue with *Installing the Driver and an Operating System* on page 48.
This chapter explains how to install your Adaptec RAID controller driver and an operating system onto a bootable array (see page 43).

To install the driver on an existing operating system, see page 55.
Before You Begin

- Install and connect your Adaptec RAID controller and internal disk drives (see page 37).
- Create a bootable array (see page 43).
- Create a driver disk (see the following section).

Note: For up-to-date operating system version support, visit the Adaptec Web Site at www.adaptec.com. From the main menu select Support>Knowledgebase>Find Answers. Select your controller type and OS support to generate a list of supported operating systems and to download the latest drivers. For up-to-date operating system version support, visit the Adaptec Web Site at www.adaptec.com. From the main menu select Support>Knowledgebase>Find Answers. Select your controller type and OS support to generate a list of supported operating systems.

Creating a Driver Disk

Note: You will need a floppy disk to complete this task.

To create a driver disk:

1. Set your system BIOS so that your computer boots from the CD drive. (For instructions, refer to your computer documentation.)

2. Turn on your computer, then insert the RAID Installation CD included in your RAID controller kit.

3. Follow the on-screen instructions to get to the Adaptec Start Menu.

4. Click *Create Driver Disk(s) for Installing/Updating your OS*, then select your operating system.
 - Windows
 - Linux
 - NetWare
 - OpenServer
 - Solaris
 - UnixWare

 Note: *Linux only*—If prompted, select your operating system and then the version.

5. When prompted, insert a floppy disk, then click *OK*.

 The system creates the driver disk.

6. Remove and label the driver disk.

7. Continue with the instructions for your operating system:
 - For Windows, see page 50.
 - For Red Hat Linux, see page 50.
 - For SUSE Linux, see page 51.
 - For NetWare, see page 51.
Installing with Windows

Note: You will need your Windows Installation CD to complete this task.

To install the Adaptec RAID controller driver while installing Windows:

1. Insert your Windows CD, then restart the computer.
2. Follow the on-screen instructions to begin the Windows installation.

 Note: When F6 is active, a prompt appears at the bottom of the screen for only 5 seconds. If you miss your chance to press F6, restart your computer.
4. Insert the driver disk, then wait until you are prompted to install a driver.
5. Press S to specify that the driver is on a floppy disk, then press Enter.

 The computer reads the disk.
6. When the Adaptec driver is found, press Enter.
7. Follow the on-screen instructions to complete the installation.
8. Continue with *Managing Your Storage Space on page 61*.

Installing with Red Hat Linux

Note: You will need your Red Hat Installation CD to complete this task.

To install the Adaptec RAID controller driver while installing Red Hat Linux:

1. Insert the first Red Hat Installation CD.
2. Restart your computer.
3. When the Red Hat Welcome screen appears, type `linux dd` at the Boot: prompt.
4. When prompted, insert the driver disk, then select OK.
5. Follow the prompts to set up the environment you want.
6. If you are installing other third-party devices, install them now. Otherwise, select Done.
7. Complete the Linux installation, following the instructions included with your operating system.
8. Continue with *Managing Your Storage Space on page 61*.
Installing with SUSE Linux

To install the Adaptec RAID controller driver while installing SUSE Linux:

1. Insert the first SUSE Installation CD.
2. Restart your computer.
3. When the SUSE installation selection screen appears, choose the type of installation you want, then press the F6 key to indicate the use of a driver disk. (If F6 is not shown on the screen, you may have an older version of SUSE; press the Alt key instead.)
4. When prompted, insert the driver disk, then press any key to continue.
5. Follow the prompts to set up the environment you want.
6. If you are installing other third-party devices, install them now. Otherwise, select Back.
7. Complete the Linux installation, following the instructions included with your operating system.

Installing with NetWare

Note: You will need your NetWare Installation CD to complete this task.

To install the driver when installing NetWare:

1. Restart your computer, then install NetWare. (For instructions, refer to your NetWare documentation.)
 To be able to load additional drivers later, select Manual install mode during the first part of the installation.
 To load additional drivers:
 a. Select Modify when the storage adapters are displayed.
 b. Select Storage adapters, then press the Insert key to add an unlisted driver from the floppy disk.
2. When the Device Types screen appears, check the Storage adapters list and select Modify to add another driver.
3. Select Storage adapters, then press Enter.
 All recognized controllers are displayed.
4. If AACRAID is detected, delete it.
5. Press Insert to add another driver.
 The available drivers are displayed.
6. Insert the driver floppy disk.
7. Press the Insert key to scan the floppy disk drive.
 Once the driver is selected, the Parameter screen is displayed.
8 From the lower window menu, select Continue, then press Enter.

If the driver installation process fails, the server console is displayed so you can see the cause of the failure.

To modify disk partitions, apply hot fixes, or perform volume maintenance, refer to your NetWare documentation.

9 Continue with Managing Your Storage Space on page 61.

Installing with OpenServer

Note: You will need your OpenServer Installation CD to complete this task.

To install the driver when installing OpenServer:

1 Insert the OpenServer Installation CD.

2 Restart your computer.

3 Follow the on-screen instructions to begin the OpenServer installation.

4 When prompted to load more HBA drivers, insert the driver disk, then select Yes. (To load more HBA drivers, repeat this step.)

5 When all drivers have loaded, select No.

6 Complete the OpenServer installation, following the instructions included with your operating system.

7 Continue with Managing Your Storage Space on page 61.

Installing with Solaris

Note: You will need a floppy disk to complete this task.

To create a driver disk:

1 Start your computer.

2 Interrupt the autoboot, press the ESC key. The Device Configuration Assistant (DCA) Utility will open.

3 Select F4_Add Driver.

4 Insert a floppy disk.

5 Complete the Solaris installation, following the instructions included with your operating system.
Installing with UnixWare

Note: You will need your UnixWare Installation CD to complete this task.

To install the driver when installing UnixWare:

1. Insert the UnixWare Installation CD.
2. Restart your computer.
3. Follow the on-screen instructions to begin the UnixWare installation.
4. When prompted to load more HBA drivers, insert the driver disk, then select Yes. (To load more HBA drivers, repeat this step.)
5. When all drivers have loaded, select No.
6. Complete the UnixWare installation, following the instructions included with your operating system.
7. Continue with *Managing Your Storage Space on page 61*.

Installing with VMware

Note: You will need your VMware Installation CD to complete this task.

To install the driver when installing VMware:

1. Insert the VMware Installation CD.
2. Restart your computer.
3. Follow the on-screen instructions to begin the VMware installation.

Note: The VMware embedded driver will see the device and install.

4. Complete the VMware installation, following the instructions included with your operating system.

Note: Currently, Adaptec Storage Manager is not supported on VMware. To create and manage arrays, use the ARC utility. See *page 63* for more information.
Installing with FreeBSD

Note: You will need your FreeBSD Installation CD to complete this task.

To install the driver when installing FreeBSD:

1. Insert the FreeBSD Installation CD.
2. Restart your computer.
3. When the FreeBSD start screen opens, select 6 to escape to loader prompt.
4. Type `load kernel`.
5. Insert the driver floppy disk.
6. Type `load disk0:aacu.ko`.

 If the driver fails to load, run `lsdev` and check for the floppy disk drive. Then, try again with the appropriate device.
7. Type `boot`.
8. Complete the FreeBSD installation, following the instructions included with your operating system.
9. Reboot your computer, then remove the driver disk.
10. Repeat Steps 3 through 7 the first time you boot the operating system to load the drivers again for the initial bootup.

Note: Currently, Adaptec Storage Manager is not supported on FreeBSD. To create and manage arrays, use the ARC utility. See page 63 for more information.
This chapter explains how to install your Adaptec RAID controller driver.

Note: To install the driver while you’re installing an operating system, see page 48.
Before You Begin

Before you begin, install and connect your Adaptec RAID controller and internal disk drives (see page 37).

You must also create a driver disk (see page 49) before you begin installing the controller driver.

Note: For up-to-date operating system version support, visit the Adaptec Web Site at www.adaptec.com. From the main menu select Support>Knowledgebase>Find Answers. Select your controller type and OS support to generate a list of supported operating systems and to download the latest drivers.

Creating a Driver Disk

Note: You will need a floppy disk to complete this task.

To create a driver disk:

1. Set your system BIOS so that your computer boots from the CD drive. (For instructions, refer to your computer documentation.)

2. Turn on your computer, then insert the RAID Installation CD included in your RAID controller kit.

3. Follow the on-screen instructions to get to the Adaptec Start Menu.

4. Click Create Driver Disk(s) for Installing/Updating your OS, then select your operating system.
 - Windows
 - Linux
 - NetWare
 - OpenServer
 - Solaris
 - UnixWare

Note: Linux only—If prompted, select your operating system and then the version.

5. When prompted, insert a floppy disk, then click OK.

 The system creates the driver disk.

6. Remove and label the driver disk.

7. Continue with the instructions for your operating system:
 - For Windows, see page 57.
 - For Red Hat or SUSE Linux, see page 57.
 - For NetWare, see page 57.
 - For OpenServer, see page 58.
 - For Solaris, see page 58.
 - For UnixWare, see page 59.
Installing on Windows

To install the driver on Windows:

1. Start or restart Windows.
 The Found New Hardware Wizard opens and searches for the driver.
2. Insert the driver disk, select Floppy drive, then click Next.
3. Click Next, then click Next again.
4. Follow the on-screen instructions to complete the driver installation.
5. Remove the driver disk and restart your computer.

Installing on Red Hat or SUSE Linux

To install the module on Red Hat or SUSE Linux:

1. Insert and mount the RAID Installation CD:
 Red Hat: mount /dev/cdrom /mnt/cdrom
 SUSE: mount /dev/cdrom /media/cdrom
2. Install the module RPM:
 rpm -Uvh mount-point/xxx/yyy.rpm
 where mount-point is the specific mount point on the Linux system, xxx is the driver path, and yyy.rpm is the rpm file.
3. Reboot your computer to ensure the driver loaded correctly.
4. Run fdisk, mkfs, and create mount points for any new disk drives.
5. Continue with Managing Your Storage Space on page 61.

Installing on NetWare

Note: Before you begin, ensure that your NetWare operating system has been upgraded to the minimum patch level specified by Novell. Refer to the Novell Web site for more information.

To install the driver on NetWare:

1. Start your computer.
2. At the NetWare server console prompt, type load hdetect, then press Enter if it has not be loaded automatically.
3. At the Device types menu, select Continue, then press Enter.
4. At the Device type option, select Modify, then press Enter.
5. Select Storage Adapters, then press Enter.
Chapter 8: Installing the Driver on an Existing Operating System

6 At the Additional Driver Options menu, select Modify, then press Enter.
7 If aacraid.ham has already been detected, delete it.
8 At the Driver Name menu, press the Insert key.
9 Insert the driver disk, press the Insert key, then press F3.
10 At the A:\ prompt, press Enter.

 The driver installs.
11 At the Additional Driver Option menu, select Return to driver summary, then press Enter.
12 At the Driver type menu, select Load on Additional Driver Options.
13 After the driver loads, select Continue.
14 Continue with Managing Your Storage Space on page 61.

Installing on OpenServer
To install the driver on OpenServer:
1 Start your computer, then insert the driver disk.
2 Begin the driver package installer:
 pkgadd -d diskette1
3 At the installer prompt, type go.
4 Select 1 for the aacraid package.
5 When the installation is complete, select q to quit the installer.
6 Reboot your computer and remove the driver disk.
7 Continue with Managing Your Storage Space on page 61.

Installing on Solaris
To install the driver on Solaris:
1 Start your computer.
2 Insert and mount the driver disk:
 volcheck
3 Change to the driver installer directory:
 cd /floppy/floppy0/DU/sol_210/i86pc/Tools
4 Start the driver installer:
 ./install.sh -i
5 Reboot your computer, then remove the driver disk.
6 Continue with Managing Your Storage Space on page 61.
Installing on UnixWare

To install the driver on UnixWare:

1. Start your computer, then insert the driver disk.
2. Begin the driver package installer:

 `pkgadd -d diskette1`
3. At the installer prompt, type `go`.
4. Select 1 for the aacraid package.
5. When the installation is complete, select q to quit the installer.
6. Reboot your computer and remove the driver disk.
7. Continue with Managing Your Storage Space on page 61.

Installing on VMware

Note: The embedded driver provided by VMware should be suitable for most applications. If an updated driver is needed, use the following procedure.

To install the driver on VMware:

1. Start your computer, then insert the driver disk.
2. At the console screen of the VMware server, mount the Adaptec CD:

 `mount -r /dev/cdrom /mnt/cdrom`
3. Install the module RPM:

 `rpm -ivh /mnt/cdrom/xxx/yyy.rpm`

 where `xxx` is the driver path, and `yyy.rpm` is the rpm file.
4. Reboot your computer and remove the driver disk.

Note: Currently, Adaptec Storage Manager is not supported on VMware. To create and manage arrays, use the ARC utility. See page 63 for more information.
Installing on FreeBSD

To install the driver on FreeBSD:

1. Start your computer.

2. Insert and mount the driver disk:

   ```bash
   mount -t msdos /dev/fd0 /mnt
   ```

3. Copy the driver package to the /tmp directory:

   ```bash
   cp /mnt/aac-02.00.00-x.tgz /tmp
   ```

4. Install the driver package:

   ```bash
   pkg_add /tmp/aac-02.00.00-x.tgz
   ```

5. Reboot your computer, then remove the driver disk.

Note: Currently, Adaptec Storage Manager is not supported on FreeBSD. To create and manage arrays, use the ARC utility. See page 63 for more information.
Managing Your Storage Space

In this chapter...

About Adaptec Storage Manager ... 62
About the Adaptec RAID Controller Configuration Utility 62
About the Adaptec RAID Configuration Utility ... 63
About the Adaptec Flash Utility ... 63
Which Utility Should I Use? ... 63

Once you have installed your Adaptec RAID controller, disk drives (or other devices), and device driver, you can begin to build and manage your storage space.

This chapter introduces Adaptec Storage Manager, and describes the other utilities included with your Adaptec RAID controller.
About Adaptec Storage Manager

Note: Currently, Adaptec Storage Manager is not supported on FreeBSD. To create and manage arrays, use the ARC utility. See page 63 for more information.

Adaptec Storage Manager is a full-featured software application that helps you build a storage space for your online data, using Adaptec RAID controllers and disk drives.

With Adaptec Storage Manager, you can group disk drives into logical drives and build in redundancy to protect your data and improve system performance.

From a single workstation, you can use Adaptec Storage Manager to monitor and manage all the controllers and disk drives in your storage space, including DAS and NAS.

When Adaptec Storage Manager is installed on a computer, the *Adaptec Storage Manager agent* is also installed automatically. The agent is like a service that keeps your storage space running. It’s designed to run in the background, without user intervention, and its job is to monitor and manage system health, event notifications, task schedules, and other on-going processes on that system. It sends notices when tasks are completed successfully, and sounds an alarm when errors or failures occur on that system.

The agent uses less memory than the full application. If your storage space includes systems that won’t be connected to monitors (and therefore won’t require the user interface), you can choose to run the *agent only* on those systems instead of the full application. For more information, refer to the Adaptec Storage Manager online Help, or to the *Adaptec Storage Manager User’s Guide for Internal RAID Storage* on the Adaptec Storage Manager Installation CD.

Installing Adaptec Storage Manager

Adaptec Storage Manager is included on the Adaptec Storage Manager Installation CD. For installation instructions, refer to the *Adaptec Storage Manager User’s Guide for Internal RAID Storage*, also included on the Adaptec Storage Manager Installation CD.

About the Adaptec RAID Controller Configuration Utility

The Adaptec RAID Controller Configuration (ARCCONF) is a command line utility that you can use to perform some basic array and configuration management functions.

With ARCCONF, you can:

- Create and delete logical drives
- Modify and copy configuration settings
- Recover from disk drive failures and troubleshoot

ARCCONF and the *Command Line Interface (CLI) for Internal RAID Storage User’s Guide*, which describes how to use ARCCONF, are included on the Adaptec Storage Manager Installation CD.

Note: Adaptec recommends that only advanced users familiar with command line interfaces use ARCCONF. Currently, ARCCONF is not supported on FreeBSD. To create and manage arrays, use the ARC utility. See page 63 for more information.
About the Adaptec RAID Configuration Utility

The Adaptec RAID Configuration (ARC) utility is a BIOS-based utility that you can use to create and manage controllers, disk drives and other devices, and arrays. The ARC utility comprises these tools:

- **Array Configuration Utility (ACU)**—For creating and managing arrays, and initializing and rescanning disk drives. (ACU for DOS is also available. See page 93.)

- **A-Select utility**—SerialSelect, SATASelect®, or SCSISelect®, for modifying your controller and disk drive settings.

- **Disk Utilities**—For formatting or verifying disk drives.

The ARC utility is included in your controller’s BIOS. For more information, see *Using the Adaptec RAID Configuration Utility* on page 84.

Note: The ARC utility is primarily intended for preoperating system installation configuration.

About the Adaptec Flash Utility

The Adaptec Flash Utility (AFU) is a text-based DOS utility that you can use to update, save, or verify your RAID controller’s firmware BIOS and Non-Volatile Random Access Memory (NVRAM).

Caution: Although the AFU contains safeguards to prevent you from accidentally damaging your RAID controller's flash contents, it is still important to use the AFU carefully and correctly to avoid rendering your RAID controller inoperable.

Adaptec recommends that only advanced users familiar with working in DOS use the AFU.

Which Utility Should I Use?

To create a bootable array, Adaptec recommends that you use the BIOS-based ACU (See *Using the Adaptec RAID Configuration Utility* on page 84).

For all subsequent storage management tasks, Adaptec recommends that you install and use Adaptec Storage Manager (see page 62). As a full-featured software application with a graphical user interface, it is the easiest to use and offers the widest range of management functions.

Note: Currently, Adaptec Storage Manager is not supported on FreeBSD. To create and manage arrays, use the ARC utility. See *Using the Adaptec RAID Configuration Utility* on page 84 for more information.
Solving Problems

In this chapter...

Troubleshooting Checklist ... 65
Silencing the Alarm .. 65
Recovering from a Disk Drive Failure ... 65
Resetting the Controller .. 67

This chapter provides basic troubleshooting information and solutions for solving controller problems.
Troubleshooting Checklist

If you encounter difficulties installing or using your Adaptec RAID controller, check these items first:

- With your computer powered off, check the connections to each disk drive, power supply, LED connector, and so on.
 Try disconnecting and reconnecting disk drives from the Adaptec RAID controller.
- Check that your Adaptec RAID controller is installed in a compatible expansion slot (PCI, PCI-X, or PCIe). To double-check the bus compatibility of your controller, see About Your RAID Controller on page 15.
- Ensure that your Adaptec RAID controller is firmly seated and secured in the PCI/PCI-X/PCIe expansion slot.
- If your Adaptec RAID controller is not detected during system boot, try installing it in a different compatible expansion slot. (See page 38 for instructions.)
- **SCSI RAID controllers only**—Ensure that each SCSI disk drive (or other device) on each SCSI bus is assigned a unique SCSI ID.
 Check that termination is set correctly on each SCSI bus.
- Did the driver install correctly?
- If you have external disk drives (or other devices), are they powered on?

If you are still unable to resolve a problem, you can find additional troubleshooting information and direction on the Adaptec Web site at www.adaptec.com or the Support Knowledgebase at ask.adaptec.com.

Silencing the Alarm

If your Adaptec RAID controller includes an alarm, the alarm will sound when an error occurs. To silence the alarm, use Adaptec Storage Manager (see Managing Your Storage Space on page 61.) OR one of the -Select Utilities (see Modifying Your Controller's Configuration on page 88.)

Recovering from a Disk Drive Failure

This section explains how to recover when a disk drive fails:

- If the array was protected by a hot spare (see page 66).
- If the array was *not* protected by a hot spare (see page 66).
- If there is a disk drive failure in more than one array simultaneously (see page 66).
- If it is a RAID 0 array (see page 66).
- If multiple disk drives fail within the same array (see page 67).

Note: In DAS environments, Adaptec Storage Manager uses the term *logical drives* when referring to *arrays* (see page 12).
Failed Disk Drive Protected by a Hot Spare

When an array is protected by a hot spare, if a disk drive in that array fails the hot spare is automatically incorporated into the array and takes over for the failed drive.

To recover from the failure:

1. Remove and replace the failed disk drive (following manufacturer’s instructions).

2. If copyback is not enabled—In Adaptec Storage Manager, remove the ‘hot spare’ designation from the original hot spare (the disk drive that was built into the array). Then, designate a new hot spare to protect the arrays on that controller.

 If copyback is enabled—Data is automatically moved back to its original location once the controller detects that the failed drive has been replaced. No action is required.

Failed Disk Drive Not Protected by a Hot Spare

When a array is not protected by a hot spare, if a disk drive in that array fails, remove and replace the failed disk drive. The controller detects the new disk drive and begins to rebuild the array.

If the controller fails to rebuild the array, check that the cables, disk drives, and controllers are properly installed and connected. Then, if necessary, use Adaptec Storage Manager to rebuild the array. For instructions, refer to the Adaptec Storage Manager User’s Guide for Internal RAID Storage or online Help.

Failure in Multiple Arrays Simultaneously

If there’s a disk drive failure in more than one array at the same time (one failure per array), and the arrays have hot spares protecting them, the controller rebuilds the arrays with these limitations:

- A hot spare must be of equal or greater size than the failed disk drive it’s replacing.
- Failed disk drives are replaced with hot spares in the order in which they failed. (The array that includes the disk drive that failed first is rebuilt first, assuming an appropriate hot spare is available—see bullet above.)

If there are more disk drive failures than hot spares, see Failed Disk Drive Not Protected by a Hot Spare.

If copyback is enabled, data is moved back to its original location once the controller detects that the failed drive has been replaced.

Disk Drive Failure in a RAID 0 Array

Because RAID 0 volumes do not include redundancy, if a disk drive fails in a RAID 0 array, the data can’t be recovered.

Correct the cause of the failure or replace the failed disk drives. Then, restore your data (if available).
Multiple Failures in the Same Array

Except in RAID 6 and RAID 60 arrays (see page 75), if more than one disk drive fails at the same time in the same array, the data can’t be recovered.

Correct the cause of the failure or replace the failed disk drives. Then, restore your data (if available).

Note: In some instances, RAID 10 and RAID 50 arrays may survive multiple disk drive failures, depending on which disk drives fail. For more information, refer to the *Adaptec Storage Manager User’s Guide for Internal RAID Storage* or online Help.

Resetting the Controller

This section explains how to reset (or flash) your Adaptec RAID controller. You may want to do this if the controller becomes inoperable, or if a firmware upgrade is unsuccessful.

To reset your Adaptec RAID controller:

1. Download the firmware version currently installed on your controller from www.adaptec.com.
2. Extract the downloaded files to a folder on your local hard drive (for example, C:\Download\Drivers).
3. Create a bootable MS-DOS floppy disk and copy the AFU.exe file to it. Copy the first firmware image to the same floppy disk.
4. Create additional bootable MS-DOS floppy disks and copy each additional firmware image to its own floppy disk.
5. Power off your computer, disconnect the power cord, then open the cabinet following the manufacturer’s instructions.
6. Disconnect all cables from the controller, then attach a shorting jumper to the Mode 0 flash connector. (To locate the Mode 0 flash connector on your Adaptec RAID controller, see the figures in *About Your RAID Controller* on page 15.)
7. Reconnect the power cord, power on your computer, then boot to the floppy disk containing the AFU.exe file (see Step 3).
8. At the prompt, type `a:\afu update /c x` where `x` is the controller number.
9. Insert the other floppy disks when prompted.
10. When the flash is complete, power off your computer, disconnect the power cord, then remove the jumper.
11. Close the computer cabinet, reconnect the power cord, then power on your computer. The controller should boot correctly.
This section provides a basic overview of the main features of Serial Attached SCSI (SAS), introduces some common SAS terms, and explains how SAS differs from parallel SCSI.

Note: For technical articles and tutorials about SAS, refer to the SCSI Trade Association (STA™) Web site at www.scsita.org.
Terminology Used in This Chapter

For convenience, SAS HBAs and SAS RAID controllers are referred to generically in this chapter as SAS cards. HBAs, RAID controllers, disk drives, and external disk drive enclosures are referred to as end devices and expanders are referred to as expander devices.

For convenience, this chapter refers to end devices and expander devices collectively as SAS devices.

What is SAS?

Legacy parallel SCSI is an interface that lets devices such as computers and disk drives communicate with each other. Parallel SCSI moves multiple bits of data in parallel (at the same time), using the SCSI command set.

SAS is an evolution of parallel SCSI to a point-to-point serial interface. SAS also uses the SCSI command set, but moves multiple bits of data one at a time. SAS links end devices through direct-attach connections, or through expander devices.

SAS cards can typically support up to 128 end devices and can communicate with both SAS and SATA devices. (You can add 128 end devices—or even more—with the use of SAS expanders. See page 73.)

Note: Although you can use both SAS and SATA disk drives in the same SAS domain (see page 73), Adaptec recommends that you not combine SAS and SATA disk drives within the same array or logical drive. The difference in performance between the two types of disk drives may adversely affect the performance of the array.

Data can move in both directions simultaneously across a SAS connection (called a link—see page 70). Link speed is 300 MB/sec in half-duplex mode. Therefore, a SAS card with eight links has a bandwidth of 2400 MB/sec.

Although they share the SCSI command set, SAS is conceptually different from parallel SCSI physically, and has its own types of connectors, cables, connection options, and terminology, as described in the rest of this chapter.

To compare SAS to parallel SCSI, see How is SAS Different from Parallel SCSI? on page 74.
How Do SAS Devices Communicate?

SAS devices communicate with each other through links. A *link* is a physical connection between two phys.

As shown in the following figure, SAS devices contain ports (see page 71), ports contain *phys*, and each phy contains one transmitter and one receiver—one *transceiver*. A phy can belong to one port only.

What’s a Phy?

Phys are part of the physical communication connection between SAS devices. Each phy contains a transceiver that sends data back and forth between SAS devices.

When a connection is formed between two end devices, a link is established from a phy in one port to a phy in the other port. As shown in the figure above, a wide port can support multiple independent links simultaneously.

Phys are internal, within SAS connectors (see page 71).

SAS cables physically connect one or more phys on one SAS device to one or more phys on another SAS device.
What’s a SAS Port?

Note: Because the physical link between SAS devices is from phy to phy, rather than port to port, a “port” is more of a virtual concept, different from what is normally considered a port on other types of RAID controllers and storage devices.

A port is one or more phys. A narrow port contains one phy. A wide port typically contains four phys.

Each port has its own unique SAS address (see page 72), and all the phys in a port share that same SAS address.

SAS card port options vary. A SAS card with four phys could be configured with one wide port, with two wide ports that comprise two phys, or with four narrow ports each containing one phy. (A wide port with four phys is referred to as a 4-wide or 4x port.)

What’s a SAS Address?

Each SAS port is identified with a unique SAS address, which is shared by all phys on that port.

For example, a SAS disk drive might have two narrow ports. Each port has one unique SAS address. The single phy in each port uses its port’s SAS address.

In another example, a SAS device might have one 4-wide port. That port has one SAS address, which is shared by all four phys in the port.

Unlike SCSI devices and SCSI IDs, SAS devices self-configure their SAS addresses. User intervention is not required to set SAS addresses, and SAS addresses cannot be modified.

What’s a SAS Connector?

A SAS or mini-SAS connector is the physical plug or receptacle that you see on a SAS device. It’s what you plug a SAS cable into, or the end of the SAS cable that’s being plugged in. (See SAS Cables on page 33.)

A connector is what forms physical links between phys. Some SAS connectors can support multiple links. The number of links a SAS connector can support is referred to as its width. Narrow connectors support a single link; wide connectors supports more than 1 link.

A single SAS device may have one or more connectors. A single SAS connector may help form links between more than two SAS devices. (For instance, as shown in the figure on page 40, the 4-wide internal SAS connector forms links with four independent disk drives.)

What do SAS Cables Look Like?

Internal standard SAS cables are narrower than internal parallel SCSI cables. The connectors vary in size depending on the number of links they support, from single link connectors to 4-wide (or larger) connectors. Internal fan-out cables let you attach four disk drives to a single 4-wide connector.

Mini-SAS connectors support both internal and external SAS connections. The mini-SAS connectors are smaller than the standard SAS internal and external connectors. Mini-SAS connectors support single and multilinks with the ability to scale to future speed needs.

For examples of some internal SAS/mini-SAS cables and an external SAS/mini-SAS cables, see SAS Cables on page 33.
How are Disk Drives Identified in SAS?

In the BIOS and in the management utilities (see Identifying Disk Drives on page 91), disk drives are identified in the following formats:

- **CNX:DevY** = Device Y is attached to Connector X (see Direct-attach Connections below for more information)
- **BoxX:SlotX** = Enclosure X is attached to a disk drive in Slot X (see Backplane Connections below for more information)
- **ExpX:PhyX** = Expander X is attached to Phy X (see SAS Expander Connections below for more information)

where X is the count number.

Note: Devices other than disk drives (CDROM, tape drives, etc...) are listed in order after your system disk drives.

In parallel SCSI, XX is the disk drive's channel number, YY is the target number, and ZZ is the logical unit number (LUN).

What are the SAS Connection Options?

You can connect end devices to each other through direct cable connections and through backplane connections. When you use one or more expander devices (see page 73), you can create large configurations.

Direct-attach Connections

In a direct-attach connection, SAS or SATA disk drives are connected directly to a SAS card with SAS or mini-SAS cables. One disk drive is attached to one SAS/mini-SAS connector with one SAS/mini-SAS cable (or multiple disk drives are attached to one SAS/mini-SAS connector with one fan-out cable). The figure on page 40 shows an example of direct-attach connections.

The number of direct-attached disk drives is limited to the number of phys supported by the SAS card. (Note that there may be multiple phys within a single connector. See page 73.)

Backplane Connections

In a backplane connection, disk drives and SAS cards are attached to and communicate with each other through a system backplane.

There are two types of backplane connections, passive and active. When connecting to either backplane, it's important to properly connect your disk drive LEDs in order to identify disk drive conditions. See About Your RAID Controller on page 15 for your RAID controller Activity LED connections and locations.

When connecting to a backplane, the Adaptec Storage Manager enables you to manage your system disk drives, see Monitoring Disk Drives with Adaptec Storage Manager on page 42.

The number of end devices is limited to the number of slots available on the backplane. For example, the Adaptec S50 enclosure, which contains an expander, is a backplane connection that supports up to 12 SAS or SATA disk drives.
Some backplanes support daisy-chain expansion to other backplanes. For example, you can daisy-chain (connect one to the next) up to nine Adaptec S50 enclosures to a single SAS card in a host system.

SAS Expander Connections

A SAS expander device literally expands the number of end devices that you can connect together. Expander devices, typically embedded into a system backplane (see page 72), support large configurations of SAS end devices, including SAS cards and SAS and SATA disk drives. With expander devices, you can build large and complex storage topologies.

There are two types of SAS expanders: *fanout expanders* and *edge expanders*. Each performs a different role in a storage system. (For more information about how SAS expanders work, refer to the STA Web site at www.scsita.org.)

You can connect up to 128 SAS ports to an edge expander. (A single edge expander can therefore support up to 128 SAS addresses.)

You can connect up to 128 edge expanders to a fanout expander.

You can use only one fanout expander in any single SAS domain (a topology of SAS—and possibly SATA—end devices and expander devices). A single SAS domain can therefore comprise up to 16,384 SAS ports (and therefore up to 16,384 SAS addresses including the fanout expander).

The next figure illustrates (in very basic terms) a SAS domain and shows how SAS cards, SAS and SATA disk drives, and expander devices can fit together in a large data storage topology.
How is SAS Different from Parallel SCSI?

In summary, although SAS and parallel SCSI both use the SCSI command set, how they move data from one place to another is very different. To support point-to-point serial data transport, SAS introduces new types of connectors, cables, connection options, and terminology.

Generally speaking, SAS is faster and more flexible than parallel SCSI, and provides more options for building your storage space. SAS lets you mix SAS and SATA disk drives together, and lets you connect many, many more devices.

This table describes many of the main differences between the two interfaces.

<table>
<thead>
<tr>
<th>Parallel SCSI</th>
<th>Serial Attached SCSI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel interface</td>
<td>Serial interface</td>
</tr>
<tr>
<td>Maximum speed 320 MB/sec shared by all devices on the bus</td>
<td>Maximum speed 300 MB/sec per phy when in half-duplex mode</td>
</tr>
<tr>
<td>Supports SCSI devices only</td>
<td>Supports SATA and SAS disk drives simultaneously</td>
</tr>
<tr>
<td>Up to 16 devices per SCSI channel</td>
<td>More than 100 disk drives per SAS card, using an expander (see page 73) or 50 SATAII disk drives.</td>
</tr>
<tr>
<td>Supports single-port devices only</td>
<td>Supports single- and dual-port devices</td>
</tr>
<tr>
<td>Uses SCSI IDs to differentiate between devices connected to the same adapter</td>
<td>Uses unique SAS addresses to differentiate between devices</td>
</tr>
<tr>
<td>User intervention required to set SCSI IDs</td>
<td>SAS addresses self-configured by SAS devices</td>
</tr>
<tr>
<td>Requires bus termination</td>
<td>Requires no bus termination</td>
</tr>
<tr>
<td>Standard SCSI connectors</td>
<td>SAS connectors (see page 33)</td>
</tr>
</tbody>
</table>
In this appendix...

Understanding Drive Segments .. 76
Non-redundant Arrays (RAID 0) .. 76
RAID 1 Arrays .. 77
RAID 1 Enhanced Arrays .. 77
RAID 10 Arrays ... 78
RAID 5 Arrays .. 79
RAID 5EE Arrays ... 80
RAID 50 Arrays ... 81
RAID 6 Arrays .. 82
RAID 60 Arrays .. 82
Selecting the Best RAID Level .. 83

When you create arrays (or logical drives), you can assign a RAID level to protect your data.

Each RAID level offers a unique combination of performance and redundancy. RAID levels also vary by the number of disk drives they support.

This appendix describes the RAID levels supported by your Adaptec RAID controller, and provides a basic overview of each to help you select the best level of protection for your data storage.
Understanding Drive Segments

A *drive segment* is a disk drive or portion of a disk drive that is used to create an array. A disk drive can include both *RAID segments* (segments that are part of an array) and available segments. Each segment can be part of only one logical device at a time. If a disk drive is not part of any logical device, the entire disk is an available segment.

Non-redundant Arrays (RAID 0)

An array with RAID 0 includes two or more disk drives and provides data *striping*, where data is distributed evenly across the disk drives in equal-sized sections. However, RAID 0 arrays do not maintain redundant data, so they offer *no data protection*.

Compared to an equal-sized group of independent disks, a RAID 0 array provides improved I/O performance.

Drive segment size is limited to the size of the smallest disk drive in the array. For instance, an array with two 250 GB disk drives and two 400 GB disk drives can create a RAID 0 drive segment of 250 GB, for a total of 1000 GB for the volume, as shown in this figure.

RAID 1 Arrays

A RAID 1 array is built from two disk drives, where one disk drive is a *mirror* of the other (the same data is stored on each disk drive). Compared to independent disk drives, RAID 1 arrays provide improved performance, with twice the read rate and an equal write rate of single disks. However, capacity is only 50 percent of independent disk drives.

If the RAID 1 array is built from different-sized disk drives, the free space, drive segment size is the size of the smaller disk drive, as shown in this figure.

RAID 1 Enhanced Arrays

A RAID 1 Enhanced (RAID 1E) array—also known as a *striped mirror*—is similar to a RAID 1 array except that data is both mirrored and striped, and more disk drives can be included. A RAID 1E array can be built from three or more disk drives.

In this example, the large bold numbers represent the striped data, and the smaller, non-bold numbers represent the mirrored data stripes.
RAID 10 Arrays

A RAID 10 array is built from two or more equal-sized RAID 1 arrays. Data in a RAID 10 array is both striped and mirrored. Mirroring provides data protection, and striping improves performance.

Drive segment size is limited to the size of the smallest disk drive in the array. For instance, an array with two 250 GB disk drives and two 400 GB disk drives can create two mirrored drive segments of 250 GB, for a total of 500 GB for the array, as shown in this figure.
RAID 5 Arrays

A RAID 5 array is built from a minimum of three disk drives, and uses data striping and parity data to provide redundancy. Parity data provides data protection, and striping improves performance.

Parity data is an error-correcting redundancy that's used to re-create data if a disk drive fails. In RAID 5 arrays, parity data (represented by Ps in the next figure) is striped evenly across the disk drives with the stored data.

Drive segment size is limited to the size of the smallest disk drive in the array. For instance, an array with two 250 GB disk drives and two 400 GB disk drives can contain 750 GB of stored data and 250 GB of parity data, as shown in this figure.
RAID 5EE Arrays

A RAID 5EE array—also known as a *hot space*—is similar to a RAID 5 array except that it includes a *distributed spare* drive and must be built from a minimum of four disk drives.

Unlike a hot spare, a distributed spare is striped evenly across the disk drives with the stored data and parity data, and can’t be shared with other logical disk drives. A distributed spare improves the speed at which the array is rebuilt following a disk drive failure.

A RAID 5EE array protects your data and increases read and write speeds. However, capacity is reduced by two disk drives’ worth of space, which is for parity data and spare data.

In this figure, S represents the distributed spare, P represents the distributed parity data.
RAID 50 Arrays

A RAID 50 array is built from six to forty-eight disk drives configured as two or more RAID 5 arrays, and stripes stored data and parity data across all disk drives in both RAID 5 arrays. (For more information, see RAID 5 Arrays on page 79.)

Note: Because they support four disk drives only, the Adaptec 2420SA RAID controller can’t support RAID 50 arrays.

The parity data provides data protection, and striping improves performance. RAID 50 arrays also provide high data transfer speeds.

Drive segment size is limited to the size of the smallest disk drive in the array. For example, three 250 GB disk drives and three 400 GB disk drives comprise two equal-sized RAID 5 arrays with 500 GB of stored data and 250 GB of parity data. The RAID 50 array can therefore contain 1000 GB (2 x 500 GB) of stored data and 500 GB of parity data.

In this figure, P represents the distributed parity data.
RAID 6 Arrays

A RAID 6 array—also known as dual drive failure protection—is similar to a RAID 5 array because it uses data striping and parity data to provide redundancy. However, RAID 6 arrays include two independent sets of parity data instead of one. Both sets of parity data are striped separately across all disk drives in the array.

RAID 6 arrays provide extra protection for your data because they can recover from two simultaneous disk drive failures. However, the extra parity calculation slows performance (compared to RAID 5 arrays).

RAID 6 arrays must be built from at least four disk drives. Maximum stripe size depends on the number of disk drives in the array.

![Diagram of RAID 6 Arrays]

RAID 60 Arrays

Similar to a RAID 50 array (see page 81), a RAID 60 array—also known as dual drive failure protection—is built from eight disk drives configured as two or more RAID 6 arrays, and stripes stored data and two sets of parity data across all disk drives in both RAID 6 arrays.

Note: Because they support four disk drives only, the Adaptec 2420SA RAID controller can’t support RAID 60 arrays.

Two sets of parity data provide enhanced data protection, and striping improves performance. RAID 60 arrays also provide high data transfer speeds.
Selecting the Best RAID Level

Use this table to select the RAID levels that are most appropriate for the logical drives on your storage space, based on the number of available disk drives and your requirements for performance and reliability.

<table>
<thead>
<tr>
<th>RAID Level</th>
<th>Redundancy</th>
<th>Disk Drive Usage</th>
<th>Read Performance</th>
<th>Write Performance</th>
<th>Built-in Hot Spare</th>
<th>Minimum Disk Drives</th>
</tr>
</thead>
<tbody>
<tr>
<td>RAID 0</td>
<td>No</td>
<td>100%</td>
<td>★★★</td>
<td>★★★</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>RAID 1</td>
<td>Yes</td>
<td>50%</td>
<td>★★</td>
<td>★★</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>RAID 1E</td>
<td>Yes</td>
<td>50%</td>
<td>★★</td>
<td>★★</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>RAID 10</td>
<td>Yes</td>
<td>50%</td>
<td>★★</td>
<td>★★</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>RAID 5</td>
<td>Yes</td>
<td>67 – 94%</td>
<td>★★★</td>
<td>★</td>
<td>No</td>
<td>3</td>
</tr>
<tr>
<td>RAID 5EE</td>
<td>Yes</td>
<td>50 – 88%</td>
<td>★★★</td>
<td>★</td>
<td>Yes</td>
<td>4</td>
</tr>
<tr>
<td>RAID 50¹</td>
<td>Yes</td>
<td>67 – 94%</td>
<td>★★★</td>
<td>★</td>
<td>No</td>
<td>6</td>
</tr>
<tr>
<td>RAID 6</td>
<td>Yes</td>
<td>50 – 88%</td>
<td>★★</td>
<td>★</td>
<td>No</td>
<td>4</td>
</tr>
<tr>
<td>RAID 60¹</td>
<td>Yes</td>
<td>50 – 88%</td>
<td>★★</td>
<td>★</td>
<td>No</td>
<td>8</td>
</tr>
</tbody>
</table>

¹ Because they support four disk drives only, the Adaptec 2420SA RAID controller can’t support RAID 50 or RAID 60 arrays.

Disk drive usage, read performance, and write performance depend on the number of drives in the logical drive. In general, the more drives, the better the performance.
Using the Adaptec RAID Configuration Utility

In this appendix...

- Introduction to the ARC Utility ... 85
- Running the ARC Utility ... 85
- Using the ACU to Create and Manage Arrays 85
- Using the Select Utility to Modify Controller Settings 87
- Formatting and Verifying Disk Drives ... 91
- Locating Disk Drives .. 91
- Identifying Disk Drives .. 91
- Viewing the Event Log ... 92

The Adaptec RAID Configuration (ARC) utility is a BIOS-based utility that you can use to create and manage controllers, disk drives and other devices, and arrays.

Note: Adaptec recommends that only advanced users familiar with working in a computer BIOS use the ARC utility tools. For more information, see *Managing Your Storage Space on page 61.*
Appendix C: Using the Adaptec RAID Configuration Utility

Introduction to the ARC Utility

The ARC utility comprises these tools:

- The Array Configuration Utility (ACU)—For creating and managing arrays, and initializing and rescanning disk drives (see page 85).

 Note: Also available—ACU for DOS. See page 93.

- A -Select Utility—SerialSelect, SATASelect, or SCSISelect, for modifying your controller and disk drive settings (see page 87).

- Disk Utilities—For formatting or verifying disk drives (see page 91).

Running the ARC Utility

If your Adaptec controller is connected to a RAID enclosure, power on your enclosure (or enclosures) before you power on your computer.

Start or restart your computer. When prompted, press Ctrl+A.

During boot up, if your system has insufficient memory the following message will display.

“Adaptec RAID Configuration Utility will load after, system initialization. Please wait... Or press <Enter> Key to attempt loading the utility forcibly [Generally, not recommended]”

Note: The first time you power on your computer after you install a new controller, the BIOS may display a configuration that doesn’t match your system’s configuration. This is normal.

Navigating the ARC Utility

All the tools within the ARC utility are menu-based and instructions for completing tasks appear on-screen. Menus can be navigated using the arrows, Enter, Esc, and other keys on your keyboard.

Using the ACU to Create and Manage Arrays

To open the ACU, start the ARC utility (see page 85). If you have more than one controller, select your controller, then press Enter. Select Array Configuration Utility, then press Enter.

Follow the on-screen instructions to create and manage arrays, and initialize, rescan, and erase disk drives.

Creating a New Array

To begin creating an array, select Create Arrays from the main ACU menu.

Only disk drives that can be used in a new array are available for selection. (Disk drives must be initialized before they can be used in an array. See Initializing Disk Drives on page 86 for more information.)

Use the Array Properties menu to modify the array’s RAID level, size, name, stripe size, and caching settings.

Note: For more information about RAID levels and using disk drives to create arrays, see Choosing a RAID Level on page 31.
Managing Existing Arrays

To view or modify existing arrays, select Manage Arrays from the main ACU menu.

From the Manage Arrays menu, you can:
- View the properties of an array.

 Note: Failed drives are displayed in a different text color.

- Make an array bootable (see Creating Bootable Arrays on page 86).

- Assign or remove hot spares.

- Delete an array.

 Caution: Before deleting an array, back up the data to avoid permanently losing it.

Creating Bootable Arrays

Note: You may need to change the system BIOS to modify the boot order. For more information, refer to your computer documentation.

The controller always uses the lowest numbered array as its bootable array.

To make an array bootable:

1. Select Manage Arrays from the main ACU menu.
2. Select the array that you want to make bootable, then press Ctrl+B.

 Note: You cannot make an array bootable while it’s building, verifying, or rebuilding.

 The array’s number changes to Array 00, which makes this array the controller’s boot array.

3. Restart your computer.

Initializing Disk Drives

If a disk drive appears grayed-out (unavailable for use in a new array), it may need to be initialized.

To begin initializing a disk drive, select Initialize Drives from the main ACU menu.

Caution: Do not initialize a disk drive that is part of an array. Initializing a disk drive that’s part of an array may make the array unusable.

Back up all data from your disk drive before you initialize it.

Rescanning Disk Drives

To begin rescanning a disk drive, select Rescan Drives from the main ACU menu.
Secure Erasing Disk Drives

When you perform a secure erase on a disk drive, all data on that disk drive is completely and irretrievably eradicated. Secure erase performs three distinct writing passes to the disk drive being erased—it does not just write zeros.

Performing a secure erase takes up to six times longer than clearing (or zeroing) a disk drive. You may want to perform a secure erase only on disk drives that contain confidential or classified information.

Note: To erase (or zero) a disk drive with non-classified information, you may choose to format it (see page 91) instead, or clear it using Adaptec Storage Manager—both options take much less time than the secure erase option.

To begin a secure erase, select Secure Erase from the main ACU menu, then select Y (yes). To return to the main ACU menu once the secure erase has begun, press Esc.

The selected disk drive(s) cannot be used until the erase is complete.

Stopping a Secure Erase

To stop a secure erase in progress:

1. In the main ACU window, select Secure Erase.
2. Select the disk drive being secure erased, then press Ctrl+Q.

 The secure erase stops and the ACU returns to its main window.

Using the -Select Utility to Modify Controller Settings

Included in the ARC utility is a tool for modifying the settings of your controller and the disk drives connected to it. This utility is called SerialSelect, SATASelect, or SCSISelect, depending on what type of controller you have.

Opening a -Select Utility

To open a -Select utility, start the ARC utility (see page 85), select the -Select utility, then press Enter.

Follow the on-screen instructions to modify the settings of your controller and connected disk drives as required.

Applying Changes and Exiting

1. To exit a -Select utility, press Esc until you are prompted to exit.

 If you modified any settings, you are prompted to save the changes before you exit.
2. Select Yes to exit, then press any key to restart your computer.

 Any changes you made take effect after the computer restarts.
Modifying Your Controller’s Configuration

Note: Default controller settings are suitable for most computers. Adaptec recommends that you *do not* change the default setting.

To modify your controller’s settings, select **Controller Configuration** from the main **-Select** utility menu.

The following table lists controller configuration options. Some options may not be available for your controller. Additional, controller-specific options are also available:

- For SAS controller-specific settings, see page 89.
- For SATA controller-specific settings, see page 89.
- For SCSI controller-specific settings, see page 90.

General Controller Settings

Note: Default settings are shown in **bold** type.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive’s Write Cache</td>
<td>When enabled, write cache is enabled on the disk drive. When disabled, write cache is not used on the disk drive.</td>
</tr>
<tr>
<td></td>
<td>Caution—When write cache is enabled, there is a slight possibility of data loss or corruption during a power failure.</td>
</tr>
<tr>
<td>Runtime BIOS</td>
<td>When enabled, the controller BIOS allows the controller to act as a bootable device. Disabling the BIOS allows another controller to act as a bootable device.</td>
</tr>
<tr>
<td>Automatic Failover</td>
<td>When enabled, the controller automatically rebuilds an array when a failed disk drive is replaced. When disabled, the array must be rebuilt manually.</td>
</tr>
<tr>
<td>Array Background Consistency Check</td>
<td>When enabled, the controller constantly verifies a redundant array. Note that there may be a significant performance reduction. Default is disabled.</td>
</tr>
<tr>
<td>BBS Support</td>
<td>When enabled in systems that support BBS, the RAID controller is presented as a bootable device in the BIOS.</td>
</tr>
<tr>
<td>Array-based BBS Support</td>
<td>When enabled in systems that support BBS, the controller presents attached bootable devices up to the BIOS for boot device selection. This is relevant for logical arrays. Default is disabled.</td>
</tr>
<tr>
<td>Physical Drives Display During POST</td>
<td>When enabled, connected disk drives are displayed during system Power On Self Test (POST). Displaying the disk drives adds a few seconds to the overall POST time. Default is disabled.</td>
</tr>
<tr>
<td>CD-ROM Boot Support</td>
<td>When enabled, the system can be booted from a bootable CD. (This setting is not available on all RAID controller models.)</td>
</tr>
<tr>
<td></td>
<td>Note—CD’s are not supported by current software.</td>
</tr>
<tr>
<td>Removable Media Devices Boot Support</td>
<td>When enabled, removable media devices, such as CD drives, are supported. (This setting is not available on all RAID controller models.)</td>
</tr>
<tr>
<td>Alarm Control</td>
<td>When enabled, the alarm sounds. Default is enabled.</td>
</tr>
<tr>
<td></td>
<td>Note—When the alarm is turned off (disabled), it will automatically turn back on after a reboot.</td>
</tr>
<tr>
<td>SATA Native Command Queuing (NCQ)</td>
<td>When enabled, NCQ is enabled. Disable this feature if you want to attach more than 48 SATA II disk drives. Only available with SATA II disk drives.</td>
</tr>
</tbody>
</table>
SAS-specific Controller Settings

In addition to the general settings listed on page 88, your Adaptec SAS controller has SAS-specific settings that can be modified if required. (For more information about SAS, see page 68.)

Note: This feature is not available with the Adaptec 31205 or Adaptec 31605 controllers.

To modify SAS-specific settings, select **PHY Configuration** from the SerialSelect main menu.

Note: Default settings are shown in **bold** type.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY Rate</td>
<td>The data transfer rate between the controller and devices. The default setting is Auto, which allows the SAS card to adjust the data transfer rate as required.</td>
</tr>
<tr>
<td>CRC Checking</td>
<td>When enabled, determines whether the controller verifies the accuracy of data transfer on the serial bus. Default setting is Yes (enabled). Set to No (disabled) only if the controller is connected to a device that does not support CRC Checking.</td>
</tr>
<tr>
<td>SAS Address</td>
<td>In a situation where you want each phy on a controller to be in a different SAS domain, this setting specifies a unique world-wide name for each phy. Default is 0. Note: This setting is for SAS address conflict resolution only and should otherwise remain at its default value.</td>
</tr>
</tbody>
</table>

SATA-specific Controller Settings

In addition to the general settings listed on page 88, your Adaptec SATA controller has a SATA-specific setting that can be modified if required.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Write Cache</td>
<td>When enabled, the controller’s write cache is enabled. Default is Yes (enabled). Caution—When enabled, there is a potential for data loss or corruption during a power failure.</td>
</tr>
</tbody>
</table>
SCSI-specific Controller Settings

In addition to the general settings listed on page 88, your Adaptec SCSI controller has SCSI-specific settings that can be modified if required.

To modify SCSI-specific settings, select **SCSI Configuration** from the SC SiSelect main menu.

SCSI Device Settings

You can use SC SiSelect to modify some of the settings on the SCSI devices connected to your SCSI controller.

To modify SCSI device settings, select **SCSI Configuration** from the SC SiSelect main menu, then select **Additional Options**. Devices are listed by SCSI ID. (To find the SCSI ID for a specific device, see *Formatting and Verifying Disk Drives* on page 91.)

For the best device performance, don’t change the default settings.

Note: Default settings are shown in **bold** type.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum Transfer Rate</td>
<td>Shows the maximum data transfer rate that the SCSI channel supports.</td>
</tr>
<tr>
<td>Enable Disconnection</td>
<td>When enabled, the SCSI device can disconnect from the SCSI channel. Default is Yes (enabled).</td>
</tr>
<tr>
<td>Initiate Wide Negotiation</td>
<td>When enabled, the SCSI channel attempts 16-bit data transfer instead of 8-bit data transfer. Default is Yes (enabled).</td>
</tr>
<tr>
<td>QAS</td>
<td>When enabled, QAS (Quick Arbitration and Selection) is used to eliminate overhead and speed up data transfers on the SCSI bus. Default is No (disabled). Note—Adaptec recommends that you do not enable QAS if you are using an enclosure that supports Ultra320 expanders.</td>
</tr>
<tr>
<td>Packetized</td>
<td>When enabled, SCSI packetization (encapsulation) is used to reduce overhead and speed data transfer. Default is Yes (enabled).</td>
</tr>
</tbody>
</table>

SCSI Channel Interface Settings

Note: Default settings are shown in **bold** type.

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller SCSI Channel ID</td>
<td>Sets the controller’s SCSI ID. Adaptec recommends that you leave the controller set to the default (7), which gives it the highest priority on the SCSI channel.</td>
</tr>
<tr>
<td>SCSI Parity Checking</td>
<td>When enabled, the controller verifies the accuracy of data transfer on the SCSI channel. Disable only if the controller is connected to any SCSI device that does not support SCSI parity. Default is enabled.</td>
</tr>
<tr>
<td>Controller SCSI Channel Termination</td>
<td>Sets termination on the controller. Adaptec recommends that you retain the default setting (auto mode).</td>
</tr>
</tbody>
</table>
Appendix C: Using the Adaptec RAID Configuration Utility

Formatting and Verifying Disk Drives

You can use the disk utilities to low-level format or verify your disk drives. (New disk drives are low-level formatted at the factory and do not need to be low-level formatted again.)

Caution: Before you format a disk drive, back up all data. Formatting destroys all data on a disk drive.

To format or verify a disk drive:

1. Start the ARC utility (see page 85).
2. Select the controller you want, then press Enter.
4. Select the disk drive you want, then press Enter.
5. Select Format Disk or Verify Disk Media.

Locating Disk Drives

Note: This feature is only available with disk drives that have an activity LED.

You can use the Identify Drive feature to physically locate a disk drive by blinking the LED.

To locate a disk drive:

1. Start the ARC utility (see page 85).
2. Select the controller you want, then press Enter.
4. Select the disk drive you want, then press Enter.
5. Select Identify Drive, then press Enter.
6. When you have finished locating your disk drive, press any key to stop the blinking.

Identifying Disk Drives

You can identify disk drives by viewing the list of disk drives on your system. Only physical drives that display during POST are shown.

To identify a disk drive:

1. Start the ARC utility (see page 85).
2. Select the controller you want, then press Enter.

The Disk Utilities view will provide you with the following information:

<table>
<thead>
<tr>
<th>Location</th>
<th>Model</th>
<th>Rev#</th>
<th>Speed</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN1=DEV1</td>
<td>The manufacturer information.</td>
<td>The revision number of the disk drive.</td>
<td>The speed of the disk drive.</td>
<td>The size of the disk drive.</td>
</tr>
</tbody>
</table>
The location information of a disk drive is determined by three types of connections:

- **Direct attached drives**—The connection is determined by the cable connected to a device, for example CN1 (connector 1) is connected to DEV1 (device 1). For more information, see *Direct-attach Connections on page 72*.

- **Storage Enclosure Processor (SEP) managed devices**—The connection is determined by an active backplane. Box0 (enclosure 0) is connected to slot0 (disk drive slot 0 in the enclosure). For more information, see *Backplane Connections on page 72*.

- **Expanders**—The connections is determined by an expander. Exp0 (expander 0) is connected to phy0 (phy 0 within a connector). For more information, see *SAS Expander Connections on page 73*.

Note: Devices other than disk drives (CDROM, tape drives, etc...) are listed in order after your system disk drives.

Viewing the Event Log

The BIOS-based event log records all firmware events, such as configuration changes, array creation, and boot activity.

Some events are not stored indefinitely—the event log is cleared of any non-persistent events each time you restart your computer; additionally, once the log is full, new events overwrite old events.

To view the event log:

1. Start the ARC utility (see page 85).
2. Select the controller you want, then press Enter.
3. When the ARC utility menu appears, then press Ctrl+P.
4. Select Controller Log Information, then press Enter.

The current event log opens.
Using the Array Configuration Utility for DOS

In this appendix...

Getting Started ... 94
Working in the ACU Using Menus.. 94
Running the ACU Using Scripts.. 95

This chapter describes the Array Configuration Utility (ACU) for DOS, a text-based utility that you can use to create, configure, and manage arrays. (A BIOS-based ACU is also available. See page 85.)

Note: Adaptec recommends that only advanced users familiar with working in DOS use the ACU for DOS utility. For more information, see Managing Your Storage Space on page 61.
Getting Started

Note: You need a bootable floppy disk to complete this task.

The ACU for DOS runs from a floppy disk which you can create using the RAID Installation CD that came in your Adaptec RAID controller kit.

To create the ACU floppy disk:

1. Insert your RAID Installation CD into the CD drive, then browse to this file: packages/firmware/controllermodel/acu.exe

 Where controllermodel is the model number of your Adaptec RAID controller.

2. Insert a bootable floppy disk and copy the acu.exe file to it.

3. Continue in one of two ways:
 - Work in the ACU using menus (see the following section)
 - Run the ACU using scripts (see page 95)

Working in the ACU Using Menus

To work in the ACU using menus:

1. Insert the ACU floppy disk (see Getting Started above), then start or restart your computer.

 The computer boots to the DOS command line.

2. Type ACU on the command line, then press Enter.

 The ACU is menu-based and instructions for completing tasks appear on-screen. Menus can be navigated using the arrow, Enter, Esc, and other keys on your keyboard.

 For more information about completing tasks, see Using the ACU to Create and Manage Arrays on page 85.
Running the ACU Using Scripts

To work in the ACU using scripts:

1. Insert the ACU floppy disk (see page 94), then start or restart your computer.

 The computer boots to the DOS command line.

2. Type `ACU` on the command line, specify a script file, and specify either the `/P` or `/R` switches listed in the following table. (Don’t specify both.)

 You may also add one or both of the optional switches.

 Note: Command line syntax is not case sensitive.

<table>
<thead>
<tr>
<th>Switch</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>/P <file></code></td>
<td>Playback Mode—The ACU reads the contents of the specified script file and creates arrays and configures channel settings based on the keywords defined in the script. See page 95.</td>
</tr>
<tr>
<td><code>/R <file></code></td>
<td>Record Mode—The ACU writes a RAID controller’s existing array configuration to a specified script file, which lets you create the same configuration by running the ACU in playback mode (<code>/P</code> switch) with the resulting script. See page 96.</td>
</tr>
<tr>
<td><code>/L <file></code></td>
<td>(Optional) Log Filename Switch—If you include this switch, the ACU records its activity and any errors it encounters in the log file. If you do not include this switch, the ACU displays activity and errors on the screen. The file is a standard MS-DOS file, which can include a drive, directory, filename, and extension. Only the filename and extension (.log) are required. If no drive or directory is specified, the file is placed in the same location as the ACU executable.</td>
</tr>
<tr>
<td><code>/C <number></code></td>
<td>(Optional) Controller Number Switch—In systems with more than one controller, this switch specifies which controller to change, where number is the controller number. The default controller number is 0. Note—The number assigned to a particular controller depends on the controller’s physical PCI slot and the order in which your system scans its PCI slots.</td>
</tr>
</tbody>
</table>

About Playback Mode

In this mode, the ACU reads the contents of the specified script file and creates arrays based on the keywords specified in the script.

The syntax is `ACU /P <file>` where *file* is the name of the script file. The file parameter can include a drive, directory, filename, and extension. If no drive or directory is specified, the script file used should be placed in the same location as the ACU executable.

Note: The script file syntax allows only one hot spare to be assigned to an array. Therefore, when recording a RAID 10, the ACU can’t map hot spares assigned to the individual mirror sets in the resulting script file. Instead, the ACU creates a single list for all hot spares assigned to the RAID 10. For more information, see *Method Keyword* on page 99.
About Record Mode

Note: You can also create a script file manually (see the following section).

In Record Mode, the ACU writes a RAID controller’s existing array configuration to a specified script file, which lets you create the same configuration by running the ACU in Playback Mode (/P switch) with the resulting script.

You can only record one RAID controller at a time with Record Mode. Record multiple RAID controllers separately using separate script files.

The syntax is `ACU /R <file>` where *file* is the name of the script file. The file parameter can include a drive, directory, filename, and extension, but only the filename and extension are required. If no drive or directory is specified, the file is placed in the same location as the ACU executable.

The ACU supports only a subset of available array types. If it encounters an array it can’t create, a warning displays (or is recorded in the log file, if the /L switch is used); no keywords for that array are recorded in its script file.

When recording an array, the ACU always uses the default Wait setting (equivalent to Wait=Yes) unless you edit the script file and include Wait=No in the array’s definition block. For more information, see *Wait Keyword* on page 100.

Creating the Script File Manually

Script files contain blocks:

- Array definition block keywords (see page 97)
- Optional—ACU error codes (see page 101)

The syntax rules are:

- Each keyword must start its own line.
- Syntax is *not* case sensitive.

Entering Comments in the Script File

To enter a comment in the script file, start with a pound character (#). You can start anywhere on a line. For a sample script that includes comments, see *Sample Scripts* on page 102.
Array Definition Block Keywords

The array definition block always begins with the keyword `Array` and ends with the keyword `End`. The other *required* array definition keywords are `Drives` and `Type`.

Array definition keywords and descriptions are listed in this table.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Required?</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Array</td>
<td>Yes</td>
<td>Indicates the start of an array definition block. No default. See page 97.</td>
</tr>
<tr>
<td>Drives</td>
<td>Yes</td>
<td>Specifies the disk drives used in creating the array. No default. See page 97.</td>
</tr>
<tr>
<td>End</td>
<td>Yes</td>
<td>Indicates the end of an array definition block. No default. See page 98.</td>
</tr>
<tr>
<td>HotspareDrives</td>
<td>No</td>
<td>Specifies hot spares to assign to the array. No default. See page 98.</td>
</tr>
<tr>
<td>InitializeAll</td>
<td>No</td>
<td>Indicates whether to initialize all the drives connected to the controller. Default is No. See page 98.</td>
</tr>
<tr>
<td>Method</td>
<td>Yes</td>
<td>Indicates the method (Build/Verify, Clear, or Quick Init) to use when creating a redundant array. Default is Build. See page 99.</td>
</tr>
<tr>
<td>ReadCache</td>
<td>No</td>
<td>Indicates whether read caching is enabled for this array. Default is Yes. See page 99.</td>
</tr>
<tr>
<td>Size</td>
<td>No</td>
<td>Specifies the size of the array. Default is Maximum. See page 99.</td>
</tr>
<tr>
<td>StripeSize</td>
<td>No</td>
<td>Specifies size of contiguous I/O, in bytes. Default is 256. See page 99.</td>
</tr>
<tr>
<td>Type</td>
<td>Yes</td>
<td>Indicates the type of array to create. No default. See page 100.</td>
</tr>
<tr>
<td>Wait</td>
<td>No</td>
<td>Indicates whether the ACU should wait for the new array's Build/Verify or Clear to complete before continuing. Default is Yes. See page 100.</td>
</tr>
<tr>
<td>WriteCache</td>
<td>No</td>
<td>Indicates whether write caching is enabled for this array. Default is Yes. See page 100.</td>
</tr>
</tbody>
</table>

Array Keyword

Array is a required keyword, indicating the start of an array definition block. The syntax is `Array=<label>`, where *label* is an optional alphanumeric string.

For example:

```
Array=MyData
```

Drives Keyword

Drives is a required keyword, specifying the devices to use in creating the array. There is no default value.

A disk drive is identified by its channel number, ID (target), and LUN, separated by colons; for example, `0:0:0` or `0:1:0`. Separate multiple disk drive identifiers with commas.

Prior to creating any new arrays, the ACU initializes any drives specified by the `Drives` keyword. If a disk drive is specified in more than one array definition block in a script, it is initialized only once.

⚠️ **Caution:** Any disk drive specified within the script file is initialized, which destroys any data on that disk drive.

For example:

```
Drives=0:0:0
Drives=0:0:0,0:1:0,0:2:0
```
End Keyword

End is a required keyword, indicating the end of the block.

HotspareDrives Keyword

Hotspare Drives is an optional keyword, specifying the hot spares to assign to the array. The syntax for listing hot spares is the same as the *Drives Keyword* on page 97. If Hotspare Drives is not specified, no hot spares are assigned to the array.

For example:

```
HotspareDrives=0:0:0,0:1:0
```

The same disk drive can be assigned to protect multiple arrays (as a pool spare). Once a pool spare is used by a failed disk drive, however, it is no longer available to protect the other arrays its assigned to.

This keyword does *not* verify that the available space on the specified hot spares is sufficient to serve as failover for the array.

When assigning hot spares to a multilevel array, Hotspare Drives assigns all the hot spares in the list to *all* arrays within the multilevel array.

InitializeAll Keyword

If you want the ACU to initialize all drives connected to the controller and delete any existing arrays before any new arrays are created, even those that are not specified in any *Drives* keyword definition, specify InitializeAll=Yes. Otherwise, the ACU initializes only those drives specified by the *Drives* keyword.

⚠️ **Caution:** Initializing a disk drive automatically deletes any existing arrays with that disk drive as their member.

Possible values:

- **Yes**—Initialize all drives.
- **No** *(default)*—Do not initialize all drives; only those drives specified with the *Drives* keyword are initialized.

For example:

```
#Initialize the drives prior array creation.
InitializeAll=Yes
```

InitializeAll is a global keyword that you need to specify only once.

InitializeAll is always performed prior to array creation regardless of its position in the script.

If both InitializeAll=Yes and InitializeAll=No are specified in the same script file, InitializeAll=Yes is always the overriding value.

If an array is deleted during a Build/Verify process, the process is automatically terminated.
Appendix D: Using the Array Configuration Utility for DOS

Method Keyword
Method is an optional keyword, indicating which method to use when creating a redundant (RAID 1, 1E, 10, 5, 5EE, 50, 6 and 60) array. Possible values:

- **Build** (the default)—Perform a Build/Verify process on the array. Takes longer than Clear, but allows you to begin using the array immediately.
- **Clear**—Clear the array. Faster than a Build/Verify process, but you have to wait for the operation to be completed before you can begin using the array.
- **Quick Init**—Makes the array available immediately, but does not accomplish a Build/Verify. Parity and mirror information is created as data is written to the disk drive (called full-stripe write mode), which reduces overall array performance. Maximum performance is achieved by starting and completing a Build/Verify.

For example:
```
Method=Build
```

ReadCache Keyword
ReadCache indicates whether the array uses read caching.

Possible values:

- **Yes** (default)—Enable read caching.
- **No**—Disable read caching.

For example:
```
ReadCache=Yes
```

Size Keyword
The Size keyword specifies the size of the array. Specify Maximum (the default) to create an array using the maximum available space, based on the array type and drives selected. Otherwise, specify the size as an integer or a decimal number, followed by the unit keyword MB (megabytes), GB (gigabytes), or TB (terabytes).

Note: A unit keyword is required with a numeric size value. If no unit keyword is specified, the ACU exits with an error.

For example:
```
Size=2.5GB
Size=300MB
Size=Maximum
```

StripeSize Keyword
The StripeSize keyword specifies the stripe size (in KB) written to each member of a striped array (RAID 0, 10, 5, 5E, 5E0, 50, 6 or 60).

The possible values for StripeSize are 16, 32, 64, 128, 256, 512 and 1024 KB. Default is 256.

For example:
```
StripeSize=256
```
Appendix D: Using the Array Configuration Utility for DOS

Type Keyword

Type is a required keyword, indicating the array type. There is no default value. The possible values: Volume, RAID0, RAID1, RAID5, RAID10, or RAID50.

Depending on the RAID levels supported by your RAID controller, additional possible values are: RAID1E, RAID5EE, RAID6, RAID60.

Wait Keyword

Wait is an optional keyword that you can use to tell the ACU to allow the ACU to continue while the Build/Verify or Clear completes in the background; specify Wait=No. Otherwise, the ACU waits by default.

If the host is powered off before the Build/Verify or Clear process completes and is then restarted, the process resumes without any user intervention.

For example:

```plaintext
Wait=Yes
Wait=No
```

WriteCache Keyword

The WriteCache keyword indicates whether write caching is used for this array if write caching is supported for the system. Possible values are as follows:

- **Yes** *(default)*—Enable the write cache.
- **No**—Disable the write cache.

Setting an array's WriteCache keyword to Yes might result in data loss or corruption during a power failure.

For example:

```plaintext
WriteCache=Yes
```

Channel Definition Block Keywords—SCSI only

The channel definition block is optional. If used, it always begins with the keyword Channel and ends with the keyword End. The channel definition block keywords are listed in this table.

<table>
<thead>
<tr>
<th>Keyword</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel</td>
<td>Used to identify the channel.</td>
</tr>
<tr>
<td>ControllerID</td>
<td>Changes the SCSI ID of the controller.</td>
</tr>
<tr>
<td>End</td>
<td>Indicates the end of a channel definition block.</td>
</tr>
</tbody>
</table>

Channel Keyword

Channel is an optional keyword that begins a channel definition block and specifies the channel number to which the channel keywords apply. Channels are numbered from zero to the maximum number of channels on the controller minus one.

You can include multiple channel definition blocks within a script file, each beginning with a channel keyword and value.

For example:

```plaintext
Channel=0
```
ControllerID Keyword

ControllerID is an optional keyword to change the SCSI ID of the controller. Normally, the SCSI controller is assigned SCSI ID 7 on each of its channels. You can specify any ID value between 0 and 7.

⚠️ **Caution:** Do not change the SCSI ID of the controller unless directed to do so by Adaptec Technical Support.

For example:

```
ControllerID=7
```

End Keyword

End is a required keyword, indicating the end of the block.

ACU Error Codes

When the ACU detects an error, it reports the error and exits immediately. If a log file is specified, the ACU writes the error code to the log file. Otherwise, it displays the error code on the screen.

The possible error messages returned by the ACU are listed in this table.

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>ACU ran without changes—ACU exited with no errors (success) and no report is required.</td>
</tr>
<tr>
<td>1</td>
<td>No controller found.</td>
</tr>
<tr>
<td>2</td>
<td>Syntax or logical error in the script file—The ACU encountered an invalid command or keyword in the specified script file.</td>
</tr>
<tr>
<td>3</td>
<td>Unable to open file.</td>
</tr>
<tr>
<td>4</td>
<td>Error in the command line parameters—You passed an invalid command-line switch to the ACU. (See Running the ACU Using Scripts on page 95 for a list of valid command-line switches.)</td>
</tr>
<tr>
<td>5</td>
<td>Unable to read system configuration—The ACU was unable to get the configuration information from the specified controller.</td>
</tr>
<tr>
<td>6</td>
<td>No drives detected.</td>
</tr>
<tr>
<td>7</td>
<td>Specified drive not found in system.</td>
</tr>
<tr>
<td>8</td>
<td>Specified array size too small—You specified an array size that is smaller than the minimum size allowed for this array.</td>
</tr>
<tr>
<td>9</td>
<td>Specified array size too big—You specified an array size that is larger than the maximum size allowed for this array.</td>
</tr>
<tr>
<td>10</td>
<td>Number of drives do not match the array type—The number of drives you selected is invalid for the type of array specified.</td>
</tr>
<tr>
<td>11</td>
<td>Unable to initialize drive.</td>
</tr>
<tr>
<td>12</td>
<td>Error occurred while creating array.</td>
</tr>
<tr>
<td>13</td>
<td>Too many spare drives assigned—You attempted to assign more than the maximum number of hot spares allowed for the specified array.</td>
</tr>
<tr>
<td>14</td>
<td>Insufficient memory to run the application.</td>
</tr>
<tr>
<td>15</td>
<td>Incorrect controller number.</td>
</tr>
<tr>
<td>16</td>
<td>Controller not responding.</td>
</tr>
<tr>
<td>17</td>
<td>Build/Verify/Clear failed.</td>
</tr>
<tr>
<td>18</td>
<td>Cannot use drives on shared channel.</td>
</tr>
</tbody>
</table>
Sample Scripts

This command invokes the ACU and creates arrays on controller 1 based on the array keywords defined in the script file A:\RAID.ACU. It also configures Channel 0 and saves a log of the operation in the log file C:\RAID.LOG:

A:\> ACU /P A:\RAID.ACU /L C:\RAID.LOG /C1

Sample Scripts for SCSI and SAS Controllers

Note: For a sample script for a SATA controller, see page 103.

This sample script file is a sample RAID.ACU script as referred to in the ACU command above. This script creates these arrays—a 500 MB single-disk volume, and a 2-GB two-disk drive RAID 1 with a hot spare:

```plaintext
# Create a 500MB volume labeled 'MySystem'
Array=MySystem
Type=Volume
Size=500MB
Drives=0:0:0
End

# Create a 2GB mirror labeled 'MyMirror'
Array=MyMirror
Type=RAID1
Size=2GB
# Use drives 1 and 2
Drives=0:1:0,0:2:0
# Disable write cache
WriteCache=No
# Assign 1 spare drive
HotspareDrives=0:3:0
End
```

This sample script file creates a maximum-size three-disk-drive RAID 5:

```plaintext
# Create a maximum size RAID 5 labeled 'MyData'
Array=MyData
Type=RAID5
Size=Maximum
# Use the maximum stripe size
StripeSize=1024
```
Clear the array (don’t build/verify it)
Method=Clear

Don’t wait for clear to complete
Wait=No

Use drives 0, 1, 2
Drives=0:0:0, 0:1:0, 0:2:0
End

Sample Script for SATA Controllers

This is a sample ACU file that will initialize all disk drives connected to the SATA controller and create a RAID 5 array with the disk drives on ports 0, 1, and 2.

Array=MyData2
Type=RAID5
Size=Maximum
InitializeAll=Yes
Method=Build/Verify
Wait=No
Drives=0:0:0, 0:1:0, 0:2:0
End
Using the Adaptec Flash Utility

In this appendix...

- System Requirements ... 105
- Before You Begin .. 105
- Running the Menu-based AFU .. 106
- Running the AFU from the Command Line 107
- Updating the Flash Using the AFU Command Line 110

This chapter describes how to use the Adaptec Flash Utility (AFU), a text-based DOS utility that you can use to update, save, or verify the RAID controller’s firmware BIOS and NVRAM.

⚠️ **Caution:** Although the AFU contains safeguards to prevent you from accidentally damaging your RAID controller’s flash contents, it is still important to use the AFU carefully and correctly to avoid rendering your RAID controller inoperable. Adaptec recommends that only advanced users familiar with working in DOS use the AFU. For more information, see *Managing Your Storage Space on page 61.*
Appendix E: Using the Adaptec Flash Utility

System Requirements

- MS–DOS version 5.0 or later.

 Note: You can’t run the AFU from a DOS command prompt window under any version of Windows.

- At least 8 MB of extended memory.

Compatibility Notes

- Supports HIMEM.SYS; compatible with other DOS drivers running under HIMEM.SYS (for example, SMARTDRV.SYS and SETVER.SYS).

- Does not support DOS extenders installed in memory, such as EMM386.SYS and DOS4GW.

Before You Begin

1. Obtain the firmware (see the following section).

2. Create a firmware kit on floppy disks (see page 106).

There are two ways to run the AFU:

1. Using the AFU menus (see page 106)

2. From the command line (see page 107)

Obtaining the Firmware

To obtain RAID controller firmware, go to:

- The RAID Installation CD—Includes the AFU executable (AFU.exe) and a separate flash image. The flash image may comprise multiple User Flash Image (UFI) files.

- The Adaptec Web site—Download a new firmware file to get the most recent version of AFU.

 See www.adaptec.com for more information.
Appendix E: Using the Adaptec Flash Utility

Creating the Firmware Floppy Disks

Note: You will need at least two bootable MS-DOS floppy disks to complete this task. You can’t create a bootable floppy disk using Windows 2000.

To create the firmware floppy disks:

1. Create a bootable MS–DOS floppy disk and copy these files to it:
 - AFU.exe
 - Axxxx01.ufi

 where xxx is the model number of your controller.

 Note: Most controller model numbers have a suffix (for example Adaptec 4800SAS). Check that the .ufi file is the correct file for your controller before copying.

2. Copy each additional Axxxx0x.ufi file to a separate floppy disk. (Some RAID controllers have two UFI files; some have four. Each goes onto its own floppy disk.)

3. To use a menu-based AFU, see the following section.

 To run the AFU from the command line, see page 107.

Running the Menu-based AFU

Note: You can also run the AFU from the command line (see page 107).

To run the menu-based AFU:

1. Shut down your operating system and reboot to DOS from a bootable MS-DOS floppy disk or from a DOS partition on a bootable drive. (You can use a disk drive connected to the controller you are updating.)

2. At the DOS command prompt, type `AFU` with no arguments.

 The AFU’s main menu is displayed.

3. Select **Select Controllers**, then select the Adaptec RAID controller(s) to be flashed.

 To update multiple RAID controllers in the same system, update the boot controller’s flash first, restart the computer, then update the flash for the remaining controllers.

4. Select **Select an Operation**.

5. Choose the operation you want, then follow the on-screen instructions to complete the task:
 - **Update**—Updates all the flash components on a RAID controller with the flash image data from the UFI file.
 - **Save**—Reads the contents of a RAID controller’s flash components and saves the data to a UFI file, which you can use to restore a RAID controller’s flash if required.
 - **Verify**—Reads the contents of a RAID controller’s flash components and compares it to the contents of the specified UFI file.
 - **Version**—Displays version information about a RAID controller’s flash components.
 - **List**—Lists all supported RAID controllers detected on your system.
6 Complete the flash operation and restart your computer before trying to use the RAID controller again. (You can not use your RAID controller while you are updating its flash.)

Running the AFU from the Command Line

Note: You can also run a menu-based AFU (see page 106).

To run the AFU from the command line:

1. Power off your computer, insert the first AFU floppy disk, then power on your computer.

 If your computer isn’t set up to boot from the bootable floppy disk, enter the system setup utility to change the setting.

2. At the DOS command, type AFU followed by a command (see page 107) and any switches you want.

 Note: To find a controller number, type `AFU LIST`, then press `Enter`.

 The AFU processes the command, prompts you to insert additional floppy disks as needed, exits, and reports either success or an error message code.

To update a RAID controller’s flash using the command line, see page 110.

AFU Commands

This section lists the available AFU commands.

List

Displays the AFU-supported RAID controllers installed on your computer. Also displays the ID numbers assigned to each controller.

You don’t have to restart the computer after completing this command.

This example shows a typical system response to a LIST command:

```
A:\> AFU LIST
Adaptec Flash Utility V4.0-0 B5749
(c)Adaptec Inc. 1999–2005. All Rights Reserved.
Controllers Detected and Recognized:
Controller #0 (03:05:00) Adaptec Adaptec 2230SLP
```

Save

Saves the contents of a RAID controller’s flash in a UFI file. The name of the UFI file is based on the controller type and can’t be changed.

You must restart the computer following a SAVE command.

The command syntax for the SAVE command is

```
AFU SAVE [/C<Controller ID>] [/D <UFI File Path>]
```
These switches are available:

- **/C <Controller ID>**—One or more RAID controller IDs representing the set of RAID controllers on which to perform the specified command. The default is 0; if the computer has multiple RAID controllers, the AFU defaults to controller 0 unless you specify otherwise.

 For example:

 To specify a single RAID controller ID: /C 0

 To specify multiple IDs separated by commas: /C 0,2

 To indicate all RAID controllers: ALL

 If you are using multiple RAID controllers, you must specify the controller you want by using the /C switch; otherwise, the AFU displays an error message and exits.

- **/D <UFI File Path>**—Specifies the path where the UFI files are located. If you do not specify the /D switch, the AFU looks for (or creates) its UFI files in the default location.

 You cannot specify the name of a UFI file, only its path. UFI filenames are predefined, based on the RAID controller type.

 In this example, the AFU saves flash contents from RAID controller 0 to a UFI file in the current default drive and directory:

 A:\> AFU SAVE /C 0

 In this example, the AFU saves flash contents from Controller 1 to a UFI file in C:\UFI_FILES:

 A:\> AFU SAVE /C 1 /D C:\UFI_FILES

Update

Updates the flash components of one or more RAID controllers on your computer from the flash image data in a UFI file. You must restart the computer following an UPDATE command.

The command syntax for the UPDATE command is:

```
AFU UPDATE [/C<Controller ID>] [/D <UFI File Path>]
```

This example shows a typical system response after an update.

```
A:\> AFU UPDATE /C 0
Adaptec Flash Utility V4.0-0 B5749
(c)Adaptec Inc. 1999–2005. All Rights Reserved.
Updating Controller 0 (Adaptec 2820)
Reading flash image file (Build 5749)
AFU is about to update firmware on controllers Adaptec Adaptec 2230SLP
***PLEASE DO NOT REBOOT THE SYSTEM DURING THE UPDATE***
This might take a few minutes.
Writing Adaptec Adaptec 2230SLP (4MB) Flash Image to controller 0...OK.
Verifying...OK
Please restart the computer to allow firmware changes to take effect.
```
Verify

Compares the contents of each of the flash components on a RAID controller to the corresponding image in a UFI file, and indicates whether they match. After using the VERIFY command, you must restart the computer.

The command syntax for the VERIFY command is as follows:

```
AFU VERIFY [/C<Controller ID>] [/D <UFI File Path>]
```

This example shows a typical system response after a VERIFY command.

```
A:\> AFU VERIFY /C 0
Adaptec Flash Utility V4.0-0 B5749
(c)Adaptec Inc. 1999–2005. All Rights Reserved.
Reading flash image file (Build 5748)
Controller #0: Adaptec Adaptec 2820SA
ROM: Checksum: 797B [VALID] (Build 5748)
File: Checksum: 797B [VALID] (Build 5748)
  Image Compares Correctly
```

Version

Displays version information about the flash components on a RAID controller. After using the VERSION command, restart your computer.

The command syntax for the VERSION command is:

```
AFU VERSION [/C<Controller ID>]
```

This example displays version information about all supported RAID controllers.

```
A:\> AFU VERSION /C 0
Adaptec Flash Utility V4.0-0 B5749
(c)Adaptec Inc. 1999–2005. All Rights Reserved.
Version Information for Controller #0 (Adaptec Adaptec 2820SA)
A:\> AFU VERSION /C ALL
```

Help

Displays a summary of AFU functions and command switches. For example:

```
A:\> AFU HELP
A:\> AFU /?
```
Appendix E: Using the Adaptec Flash Utility

Updating the Flash Using the AFU Command Line

1. Create the firmware floppy disks (see page 106).
2. Power off your computer, insert the first AFU floppy disk, then power on your computer. If your computer isn’t set up to boot from the bootable floppy disk, enter the system setup utility to change the setting.
3. At the DOS command, if you have multiple controllers and you don’t know the number of the controller you want to update, type `AFU LIST`, then press Enter. Otherwise, skip to the next step.
4. At the DOS command, type `AFU` followed by a command (see page 107) and any switches you want.
5. Update the flash using the instructions suitable for your requirements:
 - To update a single RAID controller:
     ```
     AFU UPDATE /C <cont_number>
     ```
 Where `<cont_number>` is the number of the RAID controller whose firmware you are updating. For example, to upgrade Controller 0, type `AFU UPDATE /C 0`.
 - To update multiple RAID controllers:
     ```
     AFU UPDATE /C <controller_number_a>,<controller_number_b>
     ```
 Where `<controller_number_a>` and `<controller_number_b>` are the numbers of the Adaptec RAID controllers whose firmware you are updating. For example, to upgrade controllers 0, 2, and 3, type `AFU UPDATE /C 0, 2, 3`.
 - To update all RAID controllers simultaneously:
     ```
     AFU UPDATE /C all
     ```
 Note: The UFI file identifies the RAID controllers, so you don’t have to worry about flashing the wrong controller.
6. When prompted, insert the first firmware disk into your floppy disk drive. The AFU reads the first disk.
7. When prompted, remove the first firmware disk and insert the second firmware disk into your floppy disk drive.
8. Repeat Step 7 as required until the flash update is complete.
Adaptec Serial Controller LED and I2C Connector Reference

In this appendix...

Adaptec 2420SA Activity LED and I2C Connector Specification .. 112
Adaptec 2820SA Activity LED and I2C Connector Specification .. 113
Adaptec 3085 LED and I2C Connector Specification .. 114
Adaptec 3405 LED and I2C Connector Specification .. 114
Adaptec 3805 LED and I2C Connector Specification .. 116
Adaptec 31205 LED and I2C Connector Specification ... 118
Adaptec 31605 LED and I2C Connector Specification ... 121
Adaptec 4800SAS LED and I2C Connector Specification .. 126
Adaptec 4805SAS LED and I2C Connector Specification .. 127

This chapter provides a reference guide for Adaptec® RAID controllers of Activity LED and I2C connectors.
Adaptec 2420SA Activity LED and I2C Connector Specification

2169300JA-R AAR-2420SA/JA ROHS KIT
2169300-R AAR-2420SA ROHS KIT
2169400-R AAR-2420SA/256MB ROHS SGL

- Adaptec 2420SA LED Board Connector: Molex 53398-0490 or equivalent
- LED Mating Cable Connector: Molex 51021-0400 or equivalent

J11:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LP0-</td>
<td>PORT 0 Cathode</td>
</tr>
<tr>
<td>2</td>
<td>LP1-</td>
<td>PORT 1 Cathode</td>
</tr>
<tr>
<td>3</td>
<td>LP2-</td>
<td>PORT 2 Cathode</td>
</tr>
<tr>
<td>4</td>
<td>LP3-</td>
<td>PORT 3 Cathode</td>
</tr>
</tbody>
</table>

Note: Board circuitry supports COMMON ANODE backplane implementations

- Adaptec 2420SA Activity LED Board Connector: Molex 22-28-8022 2.54mm 1x2 RA Header or equivalent
- LED Mating Cable Connector: Molex 50-57-9002 or equivalent

J1:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EX_LED</td>
<td>Aggregate Cathode</td>
</tr>
<tr>
<td>4</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
</tbody>
</table>

- Adaptec 2420SA I2C Board Connector: Molex 22-43-6030 or equivalent
- I2C Mating Cable Connector: Molex 22-43-3030 or equivalent

J14:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IIC_EM_DATA</td>
<td>I2C Data</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>IIC_EM_CLK</td>
<td>I2C Clock</td>
</tr>
</tbody>
</table>
Appendix F: Adaptec Serial Controller LED and I2C Connector Reference

Adaptec 2820SA Activity LED and I2C Connector Specification

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LP0-</td>
<td>PORT 0 Cathode</td>
</tr>
<tr>
<td>2</td>
<td>LP1-</td>
<td>PORT 1 Cathode</td>
</tr>
<tr>
<td>3</td>
<td>LP2-</td>
<td>PORT 2 Cathode</td>
</tr>
<tr>
<td>4</td>
<td>LP3-</td>
<td>PORT 3 Cathode</td>
</tr>
</tbody>
</table>

Note: Board circuitry supports COMMON ANODE backplane implementations

- Adaptec 2820SA LED Board Connector #2: Molex 53398-0490 or equivalent
- LED Mating Cable Connector #2: Molex 51021-0400 or equivalent

J12:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>LP4-</td>
<td>PORT 4 Cathode</td>
</tr>
<tr>
<td>2</td>
<td>LP5-</td>
<td>PORT 5 Cathode</td>
</tr>
<tr>
<td>3</td>
<td>LP6-</td>
<td>PORT 6 Cathode</td>
</tr>
<tr>
<td>4</td>
<td>LP7-</td>
<td>PORT 7 Cathode</td>
</tr>
</tbody>
</table>

Note: Board circuitry supports COMMON ANODE backplane implementations

- Adaptec 2820SA Activity LED Board Connector: Molex 22-28-8022 2.54mm 1x2 RA Header or equivalent
- LED Mating Cable Connector: Molex 50-57-9002 or equivalent

J1:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EX_LED</td>
<td>Aggregate Cathode</td>
</tr>
<tr>
<td>2</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
</tbody>
</table>

- Adaptec 2820SA I2C Board Connector: Molex 22-43-6030 or equivalent
- I2C Mating Cable Connector: Molex 22-43-3030 or equivalent
Appendix F: Adaptec Serial Controller LED and I2C Connector Reference

J14:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IIC_EM_DATA</td>
<td>I2C Data</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>IIC_EM_CLK</td>
<td>I2C Clock</td>
</tr>
</tbody>
</table>

Adaptec 3085 LED and I2C Connector Specification

<table>
<thead>
<tr>
<th>Kit Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2251600-R</td>
<td>ASR-3085 RoHS Kit</td>
</tr>
<tr>
<td>2251600JA-R</td>
<td>ASR-3085/JA RoHS Kit</td>
</tr>
</tbody>
</table>

- Adaptec 3085 LED Board Connector: Molex 10-89-7162 2.54mm 2x8 Header or equivalent
- LED Mating Cable Connector: Molex 22-55-2161 or equivalent

J10:

Adaptec 3405 LED and I2C Connector Specification

<table>
<thead>
<tr>
<th>J10 Pin Number</th>
<th>Signal</th>
<th>Description</th>
<th>22-55-2161 Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT0 Anode</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ACTO_7_LED_L (0)</td>
<td>CONNECTOR J3-PORT0 Cathode</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT1 Anode</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ACTO_7_LED_L (1)</td>
<td>CONNECTOR J3-PORT1 Cathode</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT2 Anode</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>ACTO_7_LED_L (2)</td>
<td>CONNECTOR J3-PORT2 Cathode</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT3 Anode</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>ACTO_7_LED_L (3)</td>
<td>CONNECTOR J3-PORT3 Cathode</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT0 Anode</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>ACTO_7_LED_L (4)</td>
<td>CONNECTOR J5-PORT0 Cathode</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT1 Anode</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>ACTO_7_LED_L (5)</td>
<td>CONNECTOR J5-PORT1 Cathode</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT2 Anode</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>ACTO_7_LED_L (6)</td>
<td>CONNECTOR J5-PORT2 Cathode</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT3 Anode</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>ACTO_7_LED_L (7)</td>
<td>CONNECTOR J5-PORT3 Cathode</td>
<td>15</td>
</tr>
</tbody>
</table>

- Adaptec 3405 LED Board Connector: Molex 10-89-7162 2.54mm 2x8 Header or equivalent.
● LED Mating Cable Connector: Molex 22-55-2081 or equivalent.

J10:

<table>
<thead>
<tr>
<th>J10 Pin Number</th>
<th>Signal</th>
<th>Description</th>
<th>22-55-2081 Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT0 Anode</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>ACT0_7_LED_L (7)</td>
<td>CONNECTOR J5-PORT0 Cathode</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT1 Anode</td>
<td>4</td>
</tr>
<tr>
<td>12</td>
<td>ACT0_7_LED_L (6)</td>
<td>CONNECTOR J5-PORT1 Cathode</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT2 Anode</td>
<td>6</td>
</tr>
<tr>
<td>14</td>
<td>ACT0_7_LED_L (5)</td>
<td>CONNECTOR J5-PORT2 Cathode</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT3 Anode</td>
<td>8</td>
</tr>
<tr>
<td>16</td>
<td>ACT0_7_LED_L (4)</td>
<td>CONNECTOR J5-PORT3 Cathode</td>
<td>7</td>
</tr>
</tbody>
</table>

● Adaptec 3405 Aggregate Activity LED Board Connector: Molex 22-28-8022 2.54mm 1x2 RA Header or equivalent.

● LED Mating Cable Connector: Molex 50-57-9002 or equivalent.

J12:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AGGREGATE4_7_L</td>
<td>Aggregate Cathode - Connector J5 Ports 0-3</td>
</tr>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
</tbody>
</table>

● Adaptec 3405 I2C Board Connector: Molex 22-43-6030 or equivalent

● I2C Mating Cable Connector: Molex 22-43-3030 or equivalent

J8:

Note: The following pins are tied to Sideband Signals of SFF-8087 connector J5 (Ports 0-3)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I2CDATA</td>
<td>I2C Data</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>I2CCLK</td>
<td>I2C Clock</td>
</tr>
</tbody>
</table>

Note: I2C signals are also routed through the SFF-8087 internal connector J5

SFF-8087 Connector J5:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>I2C Description</th>
<th>SGPIO Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>SB0.CONB</td>
<td>SB0 - 2W_SCL</td>
<td>SB0 - SClock</td>
</tr>
<tr>
<td>B9</td>
<td>SB1.CONB</td>
<td>SB1 - 2W_SDA</td>
<td>SB1 - SLoad</td>
</tr>
<tr>
<td>B10</td>
<td>GND</td>
<td>SB2 - Ground</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>A9</td>
<td>GND</td>
<td>SB3 - Ground</td>
<td>SB3 - Ground</td>
</tr>
<tr>
<td>A10</td>
<td>SB4.CONB</td>
<td>SB4 - Reset</td>
<td>SB4 - SDataOut</td>
</tr>
<tr>
<td>A11</td>
<td>SB5.CONB</td>
<td>SB5 - Backplane Address</td>
<td>SB5 - SDataIn</td>
</tr>
</tbody>
</table>
Appendix F: Adaptec Serial Controller LED and I2C Connector Reference

Adaptec 3805 LED and I2C Connector Specification

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>I2C Description</th>
<th>SGPIO Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B11</td>
<td>CONTROLLER_TYPEB_BUF</td>
<td>SB6 – Controller Type</td>
<td>SB6 – Controller Type</td>
</tr>
<tr>
<td>A8</td>
<td>BACKPLANE_TYPEB</td>
<td>SB7 – Backplane Type</td>
<td>SB7 – Backplane Type</td>
</tr>
</tbody>
</table>

- **Adaptec 3805 LED Board Connector**: Molex 10-89-7162 2.54mm 2x8 Header or equivalent
- **LED Mating Cable Connector**: Molex 22-55-2161 or equivalent

J10:

<table>
<thead>
<tr>
<th>J10 Pin Number</th>
<th>Signal</th>
<th>Description</th>
<th>22-55-2161 Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT0 Anode</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ACT0_7_LED_L (3)</td>
<td>CONNECTOR J3-PORT0 Cathode</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT1 Anode</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ACT0_7_LED_L (2)</td>
<td>CONNECTOR J3-PORT1 Cathode</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT2 Anode</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>ACT0_7_LED_L (1)</td>
<td>CONNECTOR J3-PORT2 Cathode</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT3 Anode</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>ACT0_7_LED_L (0)</td>
<td>CONNECTOR J3-PORT3 Cathode</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT0 Anode</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>ACT0_7_LED_L (7)</td>
<td>CONNECTOR J5-PORT0 Cathode</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT1 Anode</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>ACT0_7_LED_L (6)</td>
<td>CONNECTOR J5-PORT1 Cathode</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT2 Anode</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>ACT0_7_LED_L (5)</td>
<td>CONNECTOR J5-PORT2 Cathode</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT3 Anode</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>ACT0_7_LED_L (4)</td>
<td>CONNECTOR J5-PORT3 Cathode</td>
<td>15</td>
</tr>
</tbody>
</table>

- **Adaptec 3805 Aggregate Activity LED Board Connector**: Molex 22-28-8022 2.54mm 1x2 RA Header or equivalent
- **LED Mating Cable Connector**: Molex 50-57-9002 or equivalent

J11:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AGGREGATE0_3_L</td>
<td>Aggregate Cathode – Connector J3 Ports 0-3</td>
</tr>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
</tbody>
</table>
● **Adaptec 3805 Aggregate Activity LED Board Connector:** Molex 22-28-8022 2.54mm 1x2 RA Header or equivalent

● **LED Mating Cable Connector:** Molex 50-57-9002 or equivalent

J12:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AGGREGATE4_7_L</td>
<td>Aggregate Cathode – Connector J5 Ports 0-3</td>
</tr>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
</tbody>
</table>

Note:

- **Adaptec 3805 I2C Board Connector:** Molex 22-43-6030 or equivalent
- **I2C Mating Cable Connector:** Molex 22-43-3030 or equivalent

J7:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDA</td>
<td>I2C Data – Connector J3 Ports 0-3</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>SCL</td>
<td>I2C Clock – Connector J3 Ports 0-3</td>
</tr>
</tbody>
</table>

Note: Tied to Sideband Signals of SFF-8087 J3 (Ports 0-3)

- **Adaptec 3805 I2C Board Connector:** Molex 22-43-6030 or equivalent
- **I2C Mating Cable Connector:** Molex 22-43-3030 or equivalent

J8:

The following pins are tied to Sideband Signals of SFF-8087 connector J5 (Ports 0-3)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I2CDATA</td>
<td>I2C Data – Connector J5 Ports 0-3</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>I2CCLK</td>
<td>I2C Clock – Connector J5 Ports 0-3</td>
</tr>
</tbody>
</table>

Note: I2C signals are also routed through the SFF-8087 internal connectors J3 and J5

SFF-8087 Connector J3:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>I2C Description</th>
<th>SGPIO Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>SB0_CONA</td>
<td>SB0 - 2W_SCL</td>
<td>SB0 - SClock</td>
</tr>
<tr>
<td>B9</td>
<td>SB1_CONA</td>
<td>SB1 - 2W_SDA</td>
<td>SB1 - SLoad</td>
</tr>
<tr>
<td>B10</td>
<td>GND</td>
<td>SB2 - Ground</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>A9</td>
<td>GND</td>
<td>SB3 - Ground</td>
<td>SB3 - Ground</td>
</tr>
<tr>
<td>A10</td>
<td>SB4_CONA</td>
<td>SB4 - Reset</td>
<td>SB4 - SDataOut</td>
</tr>
<tr>
<td>A11</td>
<td>SB5_CONA</td>
<td>SB5 - Backplane Address</td>
<td>SB5 - SDataIn</td>
</tr>
<tr>
<td>B11</td>
<td>CONTROLLER_TYPEA_BUF</td>
<td>SB6 – Controller Type</td>
<td>SB6 – Controller Type</td>
</tr>
<tr>
<td>A8</td>
<td>BACKPLANE_TYPEA</td>
<td>SB7 – Backplane Type</td>
<td>SB7 – Backplane Type</td>
</tr>
</tbody>
</table>
SFF-8087 Connector J5:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>I2C Description</th>
<th>SGPIO Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>SB0_CONB</td>
<td>SB0 - 2W_SCL</td>
<td>SB0 - SClock</td>
</tr>
<tr>
<td>B9</td>
<td>SB1_CONB</td>
<td>SB1 - 2W_SDA</td>
<td>SB1 - SLoad</td>
</tr>
<tr>
<td>B10</td>
<td>GND</td>
<td>SB2 - Ground</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>A9</td>
<td>GND</td>
<td>SB3 - Ground</td>
<td>SB3 - Ground</td>
</tr>
<tr>
<td>A10</td>
<td>SB4_CONB</td>
<td>SB4 - Reset</td>
<td>SB4 - SDataOut</td>
</tr>
<tr>
<td>A11</td>
<td>SB5_CONB</td>
<td>SB5 - Backplane Address</td>
<td>SB5 - SDataIn</td>
</tr>
<tr>
<td>B11</td>
<td>CONTROLLER_TYPEB_BUF</td>
<td>SB6 – Controller Type</td>
<td>SB6 – Controller Type</td>
</tr>
<tr>
<td>A8</td>
<td>BACKPLANE_TYPEB</td>
<td>SB7 – Backplane Type</td>
<td>SB7 – Backplane Type</td>
</tr>
</tbody>
</table>

Adaptec 31205 LED and I2C Connector Specification

2252500-R ASR-31205 RoHS Single

- Adaptec 31205 LED Board Connector: Molex 10-89-7162 2.54mm 2x8 Header or equivalent
- LED Mating Cable Connector: Molex 22-55-2161 or equivalent

J10:

<table>
<thead>
<tr>
<th>J10 Pin Number</th>
<th>Signal</th>
<th>Description</th>
<th>22-55-2161</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT0 Anode</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ACT0_7_LED_L (0)</td>
<td>CONNECTOR J3-PORT0 Cathode</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT1 Anode</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ACT0_7_LED_L (1)</td>
<td>CONNECTOR J3-PORT1 Cathode</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT2 Anode</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>ACT0_7_LED_L (2)</td>
<td>CONNECTOR J3-PORT2 Cathode</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT3 Anode</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>ACT0_7_LED_L (3)</td>
<td>CONNECTOR J3-PORT3 Cathode</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT0 Anode</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>ACT0_7_LED_L (4)</td>
<td>CONNECTOR J5-PORT0 Cathode</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT1 Anode</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>ACT0_7_LED_L (5)</td>
<td>CONNECTOR J5-PORT1 Cathode</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT2 Anode</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>ACT0_7_LED_L (6)</td>
<td>CONNECTOR J5-PORT2 Cathode</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT3 Anode</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>ACT0_7_LED_L (7)</td>
<td>CONNECTOR J5-PORT3 Cathode</td>
<td>15</td>
</tr>
</tbody>
</table>

- Adaptec 31205 LED Board Connector: Molex 10-89-7162 2.54mm 2x8 Header or equivalent
- LED Mating Cable Connector: Molex 22-55-2081 or equivalent
J17:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
<th>22-55-2081 Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>CONNECTOR J18-PORT0 Anode</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ACT8_15_LED_L (0)</td>
<td>CONNECTOR J18-PORT0 Cathode</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>+3.3V</td>
<td>CONNECTOR J18-PORT1 Anode</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ACT8_15_LED_L (1)</td>
<td>CONNECTOR J18-PORT1 Cathode</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>+3.3V</td>
<td>CONNECTOR J18-PORT2 Anode</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>ACT8_15_LED_L (2)</td>
<td>CONNECTOR J18-PORT2 Cathode</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>+3.3V</td>
<td>CONNECTOR J18-PORT3 Anode</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>ACT8_15_LED_L (3)</td>
<td>CONNECTOR J18-PORT3 Cathode</td>
<td>7</td>
</tr>
</tbody>
</table>

- Adaptec 31205 Aggregate Activity LED Board Connector: Molex 22-28-8022 2.54mm 1x2 RA Header or equivalent
- LED Mating Cable Connector: Molex 50-57-9002 or equivalent

J11:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
<tr>
<td>2</td>
<td>AGGREGATE0_3_L</td>
<td>Aggregate Cathode – Connector J3 Ports 0-3</td>
</tr>
</tbody>
</table>

- Adaptec 31205 Aggregate Activity LED Board Connector: Molex 22-28-8022 2.54mm 1x2 RA Header or equivalent
- LED Mating Cable Connector: Molex 50-57-9002 or equivalent

J12:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
<tr>
<td>2</td>
<td>AGGREGATE4_7_L</td>
<td>Aggregate Cathode – Connector J5 Ports 0-3</td>
</tr>
</tbody>
</table>

- Adaptec 31205 Aggregate Activity LED Board Connector: Molex 22-28-8022 2.54mm 1x2 RA Header or equivalent
- LED Mating Cable Connector: Molex 50-57-9002 or equivalent

J15:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
<tr>
<td>2</td>
<td>AGGREGATE8_11_L</td>
<td>Aggregate Cathode – Connector J18 Ports 0-3</td>
</tr>
</tbody>
</table>

- Adaptec 31205 I2C Board Connector: Molex 22-43-6030 or equivalent
- I2C Mating Cable Connector: Molex 22-43-3030 or equivalent
J7:
The following pins are tied to Sideband Signals of SFF-8087 connector J3 (Ports 0-3)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDA_A</td>
<td>I2C Data – Connector J3 Ports 0-3</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>SCL_A</td>
<td>I2C Clock – Connector J3 Ports 0-3</td>
</tr>
</tbody>
</table>

- **Adaptec 31205 I2C Board Connector**: Molex 22-43-6030 or equivalent
- **I2C Mating Cable Connector**: Molex 22-43-3030 or equivalent

J8:
The following pins are tied to Sideband Signals of SFF-8087 connector J5 (Ports 0-3)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDA_B</td>
<td>I2C Data – Connector J5 Ports 0-3</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>SCL_B</td>
<td>I2C Clock – Connector J5 Ports 0-3</td>
</tr>
</tbody>
</table>

- **Adaptec 31205 I2C Board Connector**: Molex 22-43-6030 or equivalent
- **I2C Mating Cable Connector**: Molex 22-43-3030 or equivalent

J19:
The following pins are tied to Sideband Signals of SFF-8087 connector J18 (Ports 0-3)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDA_C</td>
<td>I2C Data – Connector J18 Ports 0-3</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>SCL_C</td>
<td>I2C Clock – Connector J18 Ports 0-3</td>
</tr>
</tbody>
</table>

- **I2C signals are also routed through the SFF-8087 internal connectors J3, J5, and J18**

SFF-8087 Connector J3:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>I2C Description</th>
<th>GPIO Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>SB0_CONA</td>
<td>SB0 - 2W_SCL</td>
<td>SB0 - SClock</td>
</tr>
<tr>
<td>B9</td>
<td>SB1_CONA</td>
<td>SB1 - 2W_SDA</td>
<td>SB1 - SLoad</td>
</tr>
<tr>
<td>B10</td>
<td>GND</td>
<td>SB2 - Ground</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>A9</td>
<td>GND</td>
<td>SB3 - Ground</td>
<td>SB3 - Ground</td>
</tr>
<tr>
<td>A10</td>
<td>SB4_CONA</td>
<td>SB4 - Reset</td>
<td>SB4 - SDataOut</td>
</tr>
<tr>
<td>A11</td>
<td>SB5_CONA</td>
<td>SB5 - Backplane Address</td>
<td>SB5 - SDataIn</td>
</tr>
<tr>
<td>B11</td>
<td>CONTROLLER_TYPEA_BUF</td>
<td>SB6 - Controller Type</td>
<td>SB6 - Controller Type</td>
</tr>
<tr>
<td>A8</td>
<td>BACKPLANE_TYPEA</td>
<td>SB7 - Backplane Type</td>
<td>SB7 - Backplane Type</td>
</tr>
</tbody>
</table>
Appendix F: Adaptec Serial Controller LED and I2C Connector Reference

SFF-8087 Connector J5:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>I2C Description</th>
<th>SGPIO Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>SB0_CONB</td>
<td>SB0 - 2W_SCL</td>
<td>SB0 - SClock</td>
</tr>
<tr>
<td>B9</td>
<td>SB1_CONB</td>
<td>SB1 - 2W_SDA</td>
<td>SB1 - SLoad</td>
</tr>
<tr>
<td>B10</td>
<td>GND</td>
<td>SB2 - Ground</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>A9</td>
<td>GND</td>
<td>SB3 - Ground</td>
<td>SB3 - Ground</td>
</tr>
<tr>
<td>A10</td>
<td>SB4_CONB</td>
<td>SB4 - Reset</td>
<td>SB4 - SDataOut</td>
</tr>
<tr>
<td>A11</td>
<td>SB5_CONB</td>
<td>SB5 - Backplane Address</td>
<td>SB5 - SDataIn</td>
</tr>
<tr>
<td>B11</td>
<td>CONTROLLER_TYPEB_BUF</td>
<td>SB6 – Controller Type</td>
<td>SB6 – Controller Type</td>
</tr>
<tr>
<td>A8</td>
<td>BACKPLANE_TYPEB</td>
<td>SB7 – Backplane Type</td>
<td>SB7 – Backplane Type</td>
</tr>
</tbody>
</table>

SFF-8087 Connector J18:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>I2C Description</th>
<th>SGPIO Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>SB0_CONC</td>
<td>SB0 - 2W_SCL</td>
<td>SB0 - SClock</td>
</tr>
<tr>
<td>B9</td>
<td>SB1_CONC</td>
<td>SB1 - 2W_SDA</td>
<td>SB1 - SLoad</td>
</tr>
<tr>
<td>B10</td>
<td>GND</td>
<td>SB2 - Ground</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>A9</td>
<td>GND</td>
<td>SB3 - Ground</td>
<td>SB3 - Ground</td>
</tr>
<tr>
<td>A10</td>
<td>SB4_CONC</td>
<td>SB4 - Reset</td>
<td>SB4 - SDataOut</td>
</tr>
<tr>
<td>A11</td>
<td>SB5_CONC</td>
<td>SB5 - Backplane Address</td>
<td>SB5 - SDataIn</td>
</tr>
<tr>
<td>B11</td>
<td>CONTROLLER_TYPEC_BUF</td>
<td>SB6 – Controller Type</td>
<td>SB6 – Controller Type</td>
</tr>
<tr>
<td>A8</td>
<td>BACKPLANE_TYPEC</td>
<td>SB7 – Backplane Type</td>
<td>SB7 – Backplane Type</td>
</tr>
</tbody>
</table>

Adaptec 31605 LED and I2C Connector Specification

2252800-R ASR-31605 RoHS Single

- Adaptec 31605 LED Board Connector: Molex 10-89-7162 2.54mm 2x8 Header or equivalent

- LED Mating Cable Connector: Molex 22-55-2161 or equivalent

J10:

<table>
<thead>
<tr>
<th>Board Pin Number</th>
<th>Signal</th>
<th>Description</th>
<th>22-55-2161 Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT0 Anode</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>ACTO_7_LED_L (0)</td>
<td>CONNECTOR J3-PORT0 Cathode</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT1 Anode</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>ACTO_7_LED_L (1)</td>
<td>CONNECTOR J3-PORT1 Cathode</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT2 Anode</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>ACTO_7_LED_L (2)</td>
<td>CONNECTOR J3-PORT2 Cathode</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>+3.3V</td>
<td>CONNECTOR J3-PORT3 Anode</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>ACTO_7_LED_L (3)</td>
<td>CONNECTOR J3-PORT3 Cathode</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT0 Anode</td>
<td>10</td>
</tr>
</tbody>
</table>
Appendix F: Adaptec Serial Controller LED and I2C Connector Reference

- **Adaptec 31605 LED Board Connector:** Molex 10-89-7162 2.54mm 2x8 Header or equivalent
- **LED Mating Cable Connector:** Molex 22-55-2161 or equivalent

J17:

<table>
<thead>
<tr>
<th>Board Pin Number</th>
<th>Signal</th>
<th>Description</th>
<th>22-55-2161 Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>ACTO_7_LED_L (4)</td>
<td>CONNECTOR J5-PORT0 Cathode</td>
<td>9</td>
</tr>
<tr>
<td>11</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT1 Anode</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>ACTO_7_LED_L (5)</td>
<td>CONNECTOR J5-PORT1 Cathode</td>
<td>11</td>
</tr>
<tr>
<td>13</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT2 Anode</td>
<td>14</td>
</tr>
<tr>
<td>14</td>
<td>ACTO_7_LED_L (6)</td>
<td>CONNECTOR J5-PORT2 Cathode</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>+3.3V</td>
<td>CONNECTOR J5-PORT3 Anode</td>
<td>16</td>
</tr>
<tr>
<td>16</td>
<td>ACTO_7_LED_L (7)</td>
<td>CONNECTOR J5-PORT3 Cathode</td>
<td>15</td>
</tr>
</tbody>
</table>

J11:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AGGREGATE0_3_L</td>
<td>Aggregate Cathode – Connector J3 Ports 0-3</td>
</tr>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
</tbody>
</table>

- **Adaptec 31605 Aggregate Activity LED Board Connector:** Molex 22-28-8022 2.54mm 1x2 RA Header or equivalent
- **LED Mating Cable Connector:** Molex 50-57-9002 or equivalent

J11:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AGGREGATE0_3_L</td>
<td>Aggregate Cathode – Connector J3 Ports 0-3</td>
</tr>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
</tbody>
</table>
Appendix F: Adaptec Serial Controller LED and I2C Connector Reference

- Adaptec 31605 Aggregate Activity LED Board Connector: Molex 22-28-8022 2.54mm 1x2 RA Header or equivalent
- LED Mating Cable Connector: Molex 50-57-9002 or equivalent

J12:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AGGREGATE4_7_L</td>
<td>Aggregate Cathode – Connector J5 Ports 0-3</td>
</tr>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
</tbody>
</table>

- Adaptec 31605 Aggregate Activity LED Board Connector: Molex 22-28-8022 2.54mm 1x2 RA Header or equivalent
- LED Mating Cable Connector: Molex 50-57-9002 or equivalent

J15:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AGGREGATE8_11_L</td>
<td>Aggregate Cathode – Connector J18 Ports 0-3</td>
</tr>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
</tbody>
</table>

- Adaptec 31605 Aggregate Activity LED Board Connector: Molex 22-28-8022 2.54mm 1x2 RA Header or equivalent
- LED Mating Cable Connector: Molex 50-57-9002 or equivalent

J16:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>AGGREGATE12_15_L</td>
<td>Aggregate Cathode – Connector J14 Ports 0-3</td>
</tr>
<tr>
<td>1</td>
<td>+3.3V</td>
<td>Aggregate Anode</td>
</tr>
</tbody>
</table>

- Adaptec 31605 I2C Board Connector: Molex 22-43-6030 or equivalent
- I2C Mating Cable Connector: Molex 22-43-3030 or equivalent

J7:
The following pins are tied to Sideband Signals of SFF-8087 connector J3 (Ports 0-3)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDA_A</td>
<td>I2C Data – Connector J3 Ports 0-3</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>SCL_A</td>
<td>I2C Clock – Connector J3 Ports 0-3</td>
</tr>
</tbody>
</table>

- Adaptec 31605 I2C Board Connector: Molex 22-43-6030 or equivalent
- I2C Mating Cable Connector: Molex 22-43-3030 or equivalent

J8:
The following pins are tied to Sideband Signals of SFF-8087 connector J5 (Ports 0-3)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDA_B</td>
<td>I2C Data – Connector J5 Ports 0-3</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>SCL_B</td>
<td>I2C Clock – Connector J5 Ports 0-3</td>
</tr>
</tbody>
</table>

- **Adaptec 31605 I2C Board Connector**: Molex 22-43-6030 or equivalent
- **I2C Mating Cable Connector**: Molex 22-43-3030 or equivalent

J19:

The following pins are tied to Sideband Signals of SFF-8087 connector J18 (Ports 0-3)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDA_C</td>
<td>I2C Data – Connector J18 Ports 0-3</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>SCL_C</td>
<td>I2C Clock – Connector J18 Ports 0-3</td>
</tr>
</tbody>
</table>

- **Adaptec 31605 I2C Board Connector**: Molex 22-43-6030 or equivalent
- **I2C Mating Cable Connector**: Molex 22-43-3030 or equivalent

J20:

The following pins are tied to Sideband Signals of SFF-8087 connector J14 (Ports 0-3)

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SDA_C</td>
<td>I2C Data – Connector J14 Ports 0-3</td>
</tr>
<tr>
<td>2</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>3</td>
<td>SCL_C</td>
<td>I2C Clock – Connector J14 Ports 0-3</td>
</tr>
</tbody>
</table>

- **I2C signals are also routed through the SFF-8087 internal connectors J3, J5, J18 and J14**

SFF-8087 Connector J3:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>I2C Description</th>
<th>SGPIO Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>SB0_CONA</td>
<td>SB0 - 2W_SCL</td>
<td>SB0 - SClock</td>
</tr>
<tr>
<td>B9</td>
<td>SB1_CONA</td>
<td>SB1 - 2W_SDA</td>
<td>SB1 - SLoad</td>
</tr>
<tr>
<td>B10</td>
<td>GND</td>
<td>SB2 - Ground</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>A9</td>
<td>GND</td>
<td>SB3 - Ground</td>
<td>SB3 - Ground</td>
</tr>
<tr>
<td>A10</td>
<td>SB4_CONA</td>
<td>SB4 - Reset</td>
<td>SB4 - SDataOut</td>
</tr>
<tr>
<td>A11</td>
<td>SB5_CONA</td>
<td>SB5 - Backplane Address</td>
<td>SB5 - SDataIn</td>
</tr>
<tr>
<td>B11</td>
<td>CONTROLLER_TYPEA_BUF</td>
<td>SB6 – Controller Type</td>
<td>SB6 – Controller Type</td>
</tr>
<tr>
<td>A8</td>
<td>BACKPLANE_TYPEA</td>
<td>SB7 – Backplane Type</td>
<td>SB7 – Backplane Type</td>
</tr>
</tbody>
</table>
Appendix F: Adaptec Serial Controller LED and I2C Connector Reference

SFF-8087 Connector J5:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>I2C Description</th>
<th>SGPIO Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>SB0CONDS</td>
<td>SB0 - 2W_SCL</td>
<td>SB0 - SClock</td>
</tr>
<tr>
<td>B9</td>
<td>SB1CONDS</td>
<td>SB1 - 2W_SDA</td>
<td>SB1 - SLoad</td>
</tr>
<tr>
<td>B10</td>
<td>GND</td>
<td>SB2 - Ground</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>A9</td>
<td>GND</td>
<td>SB3 - Ground</td>
<td>SB3 - Ground</td>
</tr>
<tr>
<td>A10</td>
<td>SB4CONDS</td>
<td>SB4 - Reset</td>
<td>SB4 - SDataOut</td>
</tr>
<tr>
<td>A11</td>
<td>SB5CONDS</td>
<td>SB5 - Backplane Address</td>
<td>SB5 - SDataIn</td>
</tr>
<tr>
<td>B11</td>
<td>CONTROLLER>Type_BUF</td>
<td>SB6 – Controller Type</td>
<td>SB6 – Controller Type</td>
</tr>
<tr>
<td>A8</td>
<td>BACKPLANE>TypeB</td>
<td>SB7 – Backplane Type</td>
<td>SB7 – Backplane Type</td>
</tr>
</tbody>
</table>

SFF-8087 Connector J18:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>I2C Description</th>
<th>SGPIO Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>SB0CONC</td>
<td>SB0 - 2W_SCL</td>
<td>SB0 - SClock</td>
</tr>
<tr>
<td>B9</td>
<td>SB1CONC</td>
<td>SB1 - 2W_SDA</td>
<td>SB1 - SLoad</td>
</tr>
<tr>
<td>B10</td>
<td>GND</td>
<td>SB2 - Ground</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>A9</td>
<td>GND</td>
<td>SB3 - Ground</td>
<td>SB3 - Ground</td>
</tr>
<tr>
<td>A10</td>
<td>SB4CONC</td>
<td>SB4 - Reset</td>
<td>SB4 - SDataOut</td>
</tr>
<tr>
<td>A11</td>
<td>SB5CONC</td>
<td>SB5 - Backplane Address</td>
<td>SB5 - SDataIn</td>
</tr>
<tr>
<td>B11</td>
<td>CONTROLLER>TypeC_BUF</td>
<td>SB6 – Controller Type</td>
<td>SB6 – Controller Type</td>
</tr>
<tr>
<td>A8</td>
<td>BACKPLANE>TypeC</td>
<td>SB7 – Backplane Type</td>
<td>SB7 – Backplane Type</td>
</tr>
</tbody>
</table>

SFF-8087 Connector J14:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>I2C Description</th>
<th>SGPIO Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B8</td>
<td>SB0COND</td>
<td>SB0 - 2W_SCL</td>
<td>SB0 - SClock</td>
</tr>
<tr>
<td>B9</td>
<td>SB1COND</td>
<td>SB1 - 2W_SDA</td>
<td>SB1 - SLoad</td>
</tr>
<tr>
<td>B10</td>
<td>GND</td>
<td>SB2 - Ground</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>A9</td>
<td>GND</td>
<td>SB3 - Ground</td>
<td>SB3 - Ground</td>
</tr>
<tr>
<td>A10</td>
<td>SB4COND</td>
<td>SB4 - Reset</td>
<td>SB4 - SDataOut</td>
</tr>
<tr>
<td>A11</td>
<td>SB5COND</td>
<td>SB5 - Backplane Address</td>
<td>SB5 - SDataIn</td>
</tr>
<tr>
<td>B11</td>
<td>CONTROLLER>TypeD_BUF</td>
<td>SB6 – Controller Type</td>
<td>SB6 – Controller Type</td>
</tr>
<tr>
<td>A8</td>
<td>BACKPLANE>TypeD</td>
<td>SB7 – Backplane Type</td>
<td>SB7 – Backplane Type</td>
</tr>
</tbody>
</table>
Adaptec 4800SAS LED and I2C Connector Specification

Adaptec 4800SAS Activity LED Board Connector: Molex 10-89-7102 2.54mm 2x5 Header or equivalent

LED Mating Cable Connector: Molex 22-552101 or equivalent

J10:

<table>
<thead>
<tr>
<th>J10 Pin Number</th>
<th>Signal</th>
<th>Description</th>
<th>22-552101 Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XDEVLED0-</td>
<td>PORT 0 Cathode</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>XDEVLED1-</td>
<td>PORT 1 Cathode</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>XDEVLED2-</td>
<td>PORT 2 Cathode</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>XDEVLED3-</td>
<td>PORT 3 Cathode</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>XDEVLED4-</td>
<td>PORT 4 Cathode</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>XDEVLED5-</td>
<td>PORT 5 Cathode</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>XDEVLED6-</td>
<td>PORT 6 Cathode</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>XDEVLED7-</td>
<td>PORT 7 Cathode</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>AGGREGATE_L</td>
<td>ANY PORT</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>+3_3V_ACT</td>
<td>VCC</td>
<td>9</td>
</tr>
</tbody>
</table>

Note: Board circuitry supports COMMON ANODE backplane implementations

Adaptec 4800SAS I2C Board Connector: There is NO separate I2C connector. I2C signals are contained within the side band signals of the two SFF-8484 Connectors

SFF-8484 Connector J5:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>INTA_P14</td>
<td>SB0 - 2W_SCL</td>
</tr>
<tr>
<td>15</td>
<td>INTA_P15</td>
<td>SB1 - 2W_SDA</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>SB3 - Ground</td>
</tr>
<tr>
<td>18</td>
<td>INTA_P18</td>
<td>SB4 - Reset</td>
</tr>
<tr>
<td>19</td>
<td>INTA_P19</td>
<td>SB5 - Backplane Address</td>
</tr>
</tbody>
</table>

SFF-8484 Connector J7:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>INTB_P14</td>
<td>SB0 - 2W_SCL</td>
</tr>
<tr>
<td>15</td>
<td>INTB_P15</td>
<td>SB1 - 2W_SDA</td>
</tr>
</tbody>
</table>
Appendix F: Adaptec Serial Controller LED and I2C Connector Reference

Adaptec 4805SAS LED and I2C Connector Specification

<table>
<thead>
<tr>
<th>J10 Pin Number</th>
<th>Signal</th>
<th>Description</th>
<th>22-552101 Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>XDEVLED0-</td>
<td>PORT 0 Cathode</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>XDEVLED1-</td>
<td>PORT 1 Cathode</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>XDEVLED2-</td>
<td>PORT 2 Cathode</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>XDEVLED3-</td>
<td>PORT 3 Cathode</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>XDEVLED4-</td>
<td>PORT 4 Cathode</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>XDEVLED5-</td>
<td>PORT 5 Cathode</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>XDEVLED6-</td>
<td>PORT 6 Cathode</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>XDEVLED7-</td>
<td>PORT 7 Cathode</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>AGGREGATE_L</td>
<td>ANY PORT</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>+3.3V_ACT</td>
<td>VCC</td>
<td>9</td>
</tr>
</tbody>
</table>

Note: Board circuitry supports COMMON ANODE backplane implementations

Adaptec 4805SAS I2C Board Connector There is NO separate I2C connector. I2C signals are contained within the side band signals of the two SFF-8484 Connectors

SFF-8484 Connector J5:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>INTA_P14</td>
<td>SB0 - 2W_SCL</td>
</tr>
<tr>
<td>15</td>
<td>INTA_P15</td>
<td>SB1- 2W_SDA</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>SB3 - Ground</td>
</tr>
</tbody>
</table>
SFF-8484 Connector J7:

<table>
<thead>
<tr>
<th>Pin Number</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>INTB_P14</td>
<td>SB0 - 2W_SCL</td>
</tr>
<tr>
<td>15</td>
<td>INTB_P15</td>
<td>SB1 - 2W_SDA</td>
</tr>
<tr>
<td>16</td>
<td>GND</td>
<td>SB2 - Ground</td>
</tr>
<tr>
<td>17</td>
<td>GND</td>
<td>SB3 - Ground</td>
</tr>
<tr>
<td>18</td>
<td>INTB_P18</td>
<td>SB4 - Reset</td>
</tr>
<tr>
<td>19</td>
<td>INTB_P19</td>
<td>SB5 - Backplane Address</td>
</tr>
</tbody>
</table>
Safety Information

To ensure your personal safety and the safety of your equipment:

- Keep your work area and the computer clean and clear of debris.
- Before opening the system cabinet, unplug the power cord.

Electrostatic Discharge (ESD)

⚠️ Caution: ESD can damage electronic components when they are improperly handled, and can result in total or intermittent failures. Always follow ESD-prevention procedures when removing and replacing components.

To prevent ESD damage:

- Use an ESD wrist or ankle strap and ensure that it makes skin contact. Connect the equipment end of the strap to an unpainted metal surface on the chassis.

 If a wrist strap is not available, ground yourself by touching the metal chassis before handling the controller or any other part of the computer.

- Avoid touching the controller against your clothing. The wrist strap protects components from ESD on the body only.

- Handle the controller by its bracket or edges only. Avoid touching the printed circuit board or the connectors.

- Put the controller down only on an antistatic surface such as the bag supplied in your kit.

- If you are returning the controller to Adaptec, put it back in its antistatic bag immediately.
Technical Specifications

In this appendix...

Environmental Specifications.. 131
DC Power Requirements.. 131
Current Requirements.. 131
Environmental Specifications

Note: With a Battery Backup Unit (BBU), the ambient temperature should not exceed 40 °C

<table>
<thead>
<tr>
<th>Specification</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature without forced airflow</td>
<td>0 °C to 40 °C</td>
</tr>
<tr>
<td>Ambient temperature with forced airflow</td>
<td>0 °C to 55 °C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10% to 90%, noncondensing</td>
</tr>
<tr>
<td>Altitude</td>
<td>Up to 3,000 meters</td>
</tr>
</tbody>
</table>

Note: Forced airflow is recommended.

DC Power Requirements

<table>
<thead>
<tr>
<th>Bus Type</th>
<th>Description</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCI, PCI-X, PCIe</td>
<td>Ripple and noise</td>
<td>50 mV peak-to-peak (max)</td>
</tr>
<tr>
<td>PCI, PCI-X</td>
<td>DC Voltage</td>
<td>5 V ± 5%, 3.3 V ± 10%</td>
</tr>
<tr>
<td>PCIe</td>
<td>DC Voltage</td>
<td>3.3 V ± 9%, 12 V ± 8%</td>
</tr>
</tbody>
</table>

Current Requirements

<table>
<thead>
<tr>
<th>Adaptec Model</th>
<th>Maximum Current (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptec 3085</td>
<td>1.04 A @ 3.3 VDC; 0.98 A @ 12.0 VDC</td>
</tr>
<tr>
<td>Adaptec 3405</td>
<td>1.0 A @ 3.3 VDC; 1.0 A @ 12.0 VDC</td>
</tr>
<tr>
<td>Adaptec 3805</td>
<td>1.0 A @ 3.3 VDC; 1.0 A @ 12.0 VDC</td>
</tr>
<tr>
<td>Adaptec 31205</td>
<td>1.05 A @ 3.3 VDC; 1.48 A @ 12.0 VDC</td>
</tr>
<tr>
<td>Adaptec 31605</td>
<td>1.05 A @ 3.3 VDC; 1.48 A @ 12.0 VDC</td>
</tr>
<tr>
<td>Adaptec 4000</td>
<td>1.5 A @ 3.3 VDC; 0.75 A @ 5.0 VDC</td>
</tr>
<tr>
<td>Adaptec 4800SAS</td>
<td>1.4 A @ 3.3 VDC; 2.4 A @ 5.0 VDC</td>
</tr>
<tr>
<td>Adaptec 4805SAS</td>
<td>1.5 A @ 3.3 VDC; 1.3 A @ 12.0 VDC</td>
</tr>
<tr>
<td>Adaptec 2420SA</td>
<td>0.36 A @ 3.3 VDC; 2.4 A @ 5 VDC</td>
</tr>
<tr>
<td>Adaptec 2820SA</td>
<td>0.37 A @ 3.3 VDC; 2.4 A @ 5.0 VDC</td>
</tr>
<tr>
<td>Adaptec 2130SLP</td>
<td>2.5 A @ 3.3 VDC; 2 A @ 5.0 VDC</td>
</tr>
<tr>
<td>Adaptec 2230SLP</td>
<td>2.5 A @ 3.3 VDC; 2 A @ 5.0 VDC</td>
</tr>
</tbody>
</table>
Index

A
ACU
 arrays 44
 creating arrays 44, 85
 creating bootable arrays 86
 initializing disk drives 86
 managing arrays 86
 rescanning disk drives 86
 secure erasing disk drives 87
 stopping a secure erase 87
ACU for DOS 93 to 103
 array definition block keywords 97
 creating a floppy disk 94
 menus 94
 playback mode 95
 record mode 96
 sample scripts 102
 script file syntax 96
 scripts 95
 switches 95
Adaptec customer support 3
Adaptec Flash Utility. See AFU
Adaptec RAID Configuration utility 63, 84 to 92
Adaptec RAID Controller Configuration utility. See ARCCONF
Adaptec Storage Manager 62
 creating arrays 46
 installing 62
adapters. See controllers
advanced data protection 16
AFU 63, 104 to 110
Alarm Control setting 88
ARCCONF 62
Array Background Consistency Check setting 88
Array Configuration Utility. See ACU
array definition block
 End keyword 98
 HotspareDrives keyword 98
array migration 16
Array-based BBS Support setting 88
arrays
 creating (ACU) 44, 85
 creating (Adaptec Storage Manager) 46
 creating bootable arrays 86
 making an array bootable 47
 managing with ACU 86
 non-redundant 76
 RAID 1 77
 RAID 10 78
 RAID 1E 77
 RAID 5 79
 RAID 50 81
 RAID 5EE 80
 RAID 6 82
 RAID 60 82
arrays (bootable) 43
audible alarm 65
automatic failover 16
Automatic Failover setting 88

B
backplane connections 40, 72
battery backup module 17
BBS Support setting 88
BBU 17
boards. See controllers
boot controller 44
bootable arrays 47
Index • 133

creating 43, 86

C

cables 33
cards. See controllers
CD-ROM Boot Support setting 88
command line interface (flash utility) 107
command line utility 62
connectors 72, 91
contents of controller kit 14
Controller SCSI Channel ID setting 90
Controller SCSI Channel Termination setting 90
controllers
 Alarm Control setting 88
 Array Background Consistency Check setting 88
 Array-based BBS Support setting 88
 array-level features 16
 Automatic Failover setting 88
 BBS Support setting 88
cables 33
CD-ROM Boot Support setting 88
cables 33
connecting external devices 42
data protection 16
descriptions 15 to 29
disk drives 32
Drive's Write Cache setting 88
enhanced features 17
event log 92
figures 15 to 29
firmware 105
flashing 67
installing options 35
installing 38
keyed features 17
modifying general settings 88
modifying settings with -Select utilities 87
Physical Drives Display During POST setting 88
RAID levels 31
Removable Media Devices Boot Support setting 88
resetting 67
Runtime BIOS setting 88
setting boot controller 44
specifications 130
standard features
troubleshooting 65
updating firmware 105
upgrading firmware 17
copyback 16
customer support 3

d

direct-attach connections 39, 72
disk drives 32
cables 33
connecting to SAS controllers 39
connecting to SATA controllers 41
connecting to SCSI controllers 41
connections 92
external 42
failure recovery
 multiple arrays 66
 multiple disk drives 67
 RAID 0 arrays 66
 with hot spare 66
 without hot spare 66
formatting 91
HVD 32
identifying 91
initializing 86
LVD 32
recovering from failure 65
rescanning 86
SAS 72
SAS identifiers 72
SE 32
secure erasing 87
 stopping a secure erase 87
types of connections 92
verifying 91
drive requirements 32
Drive's Write Cache setting 88
driver and operating system installation 36, 48, 54
driver disk 49
driver installation 55 to 59, ?? to 60
drivers
 installing on FreeBSD 60
 installing on Linux 57
 installing on NetWare 57
 installing on OpenServer 58
 installing on Solaris 58
 installing on UnixWare 59
 installing on VMWare 59
 installing on Windows 57
 installing with FreeBSD 54
 installing with Linux 50, 51
 installing with NetWare 51
 installing with OpenServer 52
 installing with UnixWare 53
 installing with VMWare 53
 installing with Windows 50
Index

- electrostatic discharge 129
- Enable Disconnection setting 90
- end devices 69
- End property 98
- enhanced features 17
- event log 92
- expander connections 73
- expander devices 69
- external devices 42

F

- failed disk drives 65
 - multiple arrays 66
 - multiple disk drives 67
 - RAID 0 arrays 66
 - without hot spare 66
- feature keys 17
- firmware 105
 - creating floppy disks 106
- firmware upgrades 17
- flashing controllers 67
- floppy disks for firmware update 106
- formatting disk drives 91
- FreeBSD
 - driver installation 60
 - OS installation 54

H

- hard disk, hard disk drive, hard drive. See disk drive
- hot spares 16
- HotspareDrives keyword
 - array definition block 98

I

- initializing disk drives 86
- Initiate Wide Negotiation setting 90
- installation
 - controllers 38
 - creating a driver disk 49
 - disk drives (SAS) 39
 - disk drives (SATA) 41
 - disk drives (SCSI) 41
 - driver 55 to 59, ?? to 60
 - driver and FreeBSD 54
 - driver and Linux 50, 51
 - driver and NetWare 51
 - driver and OpenServer 52
 - driver and operating system 36, 48, 54
 - driver and UnixWare 53
 - driver and VMWare 53
 - driver and Windows 50
- existing operating system 36
- external devices 42
- installation options 35
- SAS backplane 40
- SAS direct-attach 39
- with operating system 35

K

- keyed features 17
- kit contents 14

L

- links (SAS) 70
- Linux
 - driver installation 57
 - OS installation 51
- Linux installation 50
- locked features 17

M

- Managing 86
- Maximum Transfer Rate setting 90
- mini-SAS
 - direct connection 40
 - enclosure cable 33
 - internal cable 33
 - overview 71
 - SAS to SATA cable 34
- mirroring 31

N

- NCQ 16
- NetWare
 - driver installation 57
 - OS installation 51
 - non-redundant arrays 76

O

- online expansion 16
- OpenServer
 - driver installation 58
 - OS installation 52
- operating system installation 36, 48, 54
- operating systems 14
P
Packetized setting 90
parity 31
Phy Rate setting 89
phys 70
Physical Drives Display During POST setting 88
playback mode 95

Q
QAS setting 90

R
RAID 16, 17
non-redundant arrays 76
RAID 0 76
RAID 1 77
RAID 10 78
RAID 1E 16, 77
RAID 5 79
RAID 50 81
RAID 5EE 16, 80
RAID 6 16, 82
RAID 60 17, 82
RAID controllers. See controllers
RAID levels 31
record mode 96
recovering from disk drive failure 65
Red Hat
driver installation 57
OS installation 50
Redundant Array of Independent Disks. See RAID
Removable Media Devices Boot Support setting 88
replacing failed disk drives 65
requirements 14
drive 32
rescanning disk drives 86
resetting controllers 67
Runtime BIOS setting 88

S
safety information 129
SAS
4-wide ports 71
backplane connections 40, 72
cables 33
comparison to parallel SCSI 74
connectors 71
description 69
direct-attach connections 39, 72
disk drive identifiers 72
disk drives 32, 72
cable expanders 73
disk drives 69
expander connections 73
expander devices 69
fanout expanders 73
link speed 69
links 70
narrow connectors 71
narrow ports 71
phys 70
ports 70, 71
SAS address 71
SAS cards 69
SAS devices 69
SAS domain 73
terminology 69
transceivers 70
wide connectors 71
wide ports 71
SAS Address setting 89
SAS controllers
cables 33
connecting disk drives 39
CRC Checking setting 89
disk drives 32
modifying with -Select utilities 89
Phy Rate setting 89
SAS Address setting 89
SAS devices 69
SATA
cables 34
disk drives 32
SATA controllers
cables 34
connecting disk drives 41
disk drives 32
modifying with -Select utilities 89
Write Cache setting 89
SATA-Select 87
scripts in ACU for DOS 102
SCSI
cables 35
comparison to SAS 74
disk drives 32
SCSI controllers
cables 35
connecting disk drives 41
Controller SCSI Channel ID setting 90
Controller SCSI Channel Termination setting 90
Index ● 136

disk drives 32
Enable Disconnection setting 90
Initiate Wide Negotiation setting 90
Maximum Transfer Rate setting 90
modifying with -Select utilities 90
Packetized setting 90
QAS setting 90
SCSI Parity Checking setting 90
SCSI Select 87
secure erasing disk drives 87
 stopping a secure erase 87
-Select utilities 87
 applying changes 87
 exiting 87
 modifying controller settings 88
 opening 87
Serial ATA. See SATA
Serial Attached SCSI. See SAS
SerialSelect 87
Small Computer System Interface. See SCSI
snapshot 17
software 62
Solaris
 driver installation 58
specifications 130
storage management
 Adaptec RAID Configuration utility 63
 Adaptec Storage Manager 62
 AFU 63
 ARCCONF 62
storage space 12
support, customer 3
SUSE
 driver installation 57
SUSE installation 51
switches in ACU for DOS 95
system requirements 14

T

 technical specifications 130
 technical support 3
 Technical Support Identification (TSID) number 3
terminology 12
 SAS 69
tools
 Adaptec RAID Configuration utility 63
 Adaptec Storage Manager 62
 AFU 63
 ARCCONF 62
troubleshooting tips 64

TSID Number
 See Technical Support Identification Number

U

UnixWare
 driver installation 59
 OS installation 53
upgrading firmware 17
utilities
 Adaptec RAID Controller utility 63
 AFU 63
 ARCCONF 62

V

verifying disk drives 91
VMWare
 driver installation 59
 OS installation 53

W

Windows
 driver installation 57
 OS installation 50
 Write Cache setting 89